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Abstract

Variations in the functional connectivity of large-scale cortical brain networks may explain individual differences in
learning ability. We used a dynamic network analysis of fMRI data to identify changes in functional brain networks that are
associated with context-dependent rule learning. During fMRI scanning, naïve subjects performed a cognitive task designed
to test their ability to learn context-dependent rules. Notably, subjects were given minimal instructions about the task prior
to scanning. We identified several key network characteristics associated with fast and accurate rule learning. First,
consistent with the formation of stable functional networks, a dynamic community detection analysis revealed regionally
specific reductions in flexible switching between different functional communities in successful learners. Second,
successful rule learners showed decreased centrality of ventral attention regions and increased assortative mixing of
cognitive control regions as the rules were learned. Finally, successful subjects showed greater decoupling of default and
attention communities throughout the entire task, whereas ventral attention and cognitive control regions became more
connected during learning. Overall, the results support a framework by which a stable ventral attention community and
more flexible cognitive control community support sustained attention and the formation of rule representations in
successful learners.
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Introduction
We often encounter situations where we must learn and apply
rules. For example, imagine searching for parking on an unfa-
miliar road. Depending on the context of the situation—the
location, time of day, and status of your parking permit—a
“no-parking” rule may or may not apply. Here, we examine
the changes in functional network connectivity associated with
learning a set of context-dependent rules.

Studies of rule learning have described a coordinated sys-
tem of prefrontal cortical regions essential for representing and

utilizing rules (for review, see Mansouri et al. 2020). Electro-
physiological recordings in non-human primates have identified
neurons in orbitofrontal cortex, ventrolateral prefrontal cortex
(vlPFC), and dorsolateral prefrontal cortex (dlPFC) that selec-
tively fire for different abstract rules (Hoshi et al. 2000; Wallis
et al. 2001). Recordings from dlPFC neurons demonstrate that as
rules become learned, the onset of neuronal firing shifts earlier
in the trial (Pasupathy and Miller 2005; Cromer et al. 2011).

In humans, network neuroscience offers an array of methods
to study the dynamic network changes associated with learning
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(for review, see Bassett and Mattar 2017). With these methods,
the brain is conceptualized as a network of nodes (brain regions),
connected by weighted edges (functional connectivity strength).
Nodes can be assigned to different cortical networks, which
we call communities. Canonical communities (e.g., default, dor-
sal/ventral attention, and cognitive control communities) have
been defined previously from large samples of resting state
fMRI data (Power et al. 2011; Yeo et al. 2011). Dynamic network
analyses have been extensively employed in studies of implicit
motor sequence learning, showing that during a serial reaction
time (SRT) task sensory systems become functionally segre-
gated, and PFC becomes functionally integrated (Bassett et al.
2015). Moreover, the degree of community switching (flexibility)
in frontoparietal cortical regions was predictive of subsequent
performance on the task (Bassett et al. 2011). Task-specific net-
work reconfiguration has been observed when comparing dif-
ficulty levels on an n-back working memory task (Braun et al.
2015), on an abstract reasoning task (Hearne et al. 2017), and
during reinforcement learning (Gerraty et al. 2018). Studies of
associative memory have shown that the functional relation-
ships within and between communities can be indicative of
learning rate and task-performance (Fatima et al. 2016; Gerraty
et al. 2018). Broadly, decoupling of default and dorsal attention
communities is a strong marker of cognitive states (Dixon et al.
2017) and is a predictor of performance on working memory
(Keller et al. 2015) and fluid intelligence tasks (Cole et al. 2012).
The cognitive control community regulates this decoupling by
supporting switching between different mental representations
(Cole and Schneider 2007; Spreng et al. 2013) and becomes active
during memory-guided attention (Rosen et al. 2016).

Here, we applied network neuroscience techniques to a
context-dependent rule learning task. During the task, naïve
participants learned a novel set of context-dependent rules in
order to correctly identify paired associates (Zhu et al. 2020). In
contrast with previous studies, which have primarily examined
rule retrieval, we designed the task to include minimal
instruction and no training before scanning to specifically
investigate rule learning. Overall accuracy on the task varied
significantly over time and across individuals, allowing us to
compare the brain network organization of successful and
unsuccessful learners. Through a dynamic network analysis,
we characterized shifts in network metrics associated with
successful learning.

The primary goals of our network analysis were to 1) assess
how network dynamics differed between successful and unsuc-
cessful learners and 2) characterize how network measures
shifted as subject performance improved on the task. We
predicted that successful learners would form stable functional
representations of the rules, which would correspond to
lower levels of community switching (network flexibility). This
hypothesis is supported by previous literature showing that
performance on language, reasoning, and working memory
tasks is associated with increased stability of functional
networks (Schultz and Cole 2016; Ferguson et al. 2017). As a
general framework, we predicted that the task would become
more automatic for successful learners as their performance
improved, corresponding to 1) greater functional segregation
(network assortativity) and decreased centrality of cognitive
control regions as learning occurred, and 2) decoupling of the
default and attention communities. Our results provide a new
perspective, identifying a key role for brain-wide functional
networks that are shown to decouple and stabilize during rule
learning.

Materials and Methods
Participants

A total of 32 participants were scanned for the study (age,
mean = 22.78, SD = 3.97; 14 female) and 29 were included in the
final analysis. Participants were recruited from the Boston area
and were English language speakers between the ages of 18
and 35. All subjects had normal or corrected-to-normal vision
and reported no past or current neurological or psychiatric
disorders. All procedures were approved by the Boston Univer-
sity Institutional Review Board and all subjects provided writ-
ten informed consent. For the three participants not included
in the final analysis, one withdrew during scanning, one was
excluded for undisclosed prior knowledge about the task, and
one was excluded for excess head motion (>3 mm framewise
displacement during two or more scanning runs).

Cognitive Task

Before fMRI scanning, participants were not pre-trained or pro-
vided with task instructions. During scanning, subjects per-
formed a cognitive task designed to test their ability to learn
context-dependent associative rules (Fig. 1). Our lab has previ-
ously used this task for computational modeling and behavioral
testing of context-dependent rule learning (Zhu et al. 2020).
During the task, a cue image appeared on the screen (2.0 s),
followed by a delay (2.0 s) and then an associate image (2.0 s).
Subjects were then allowed 2.0 s to decide whether or not the cue
image was correctly paired with the associate image. Subjects
indicated their response (match or mismatch) by pressing the
left or right button on a response-box, and were provided with
feedback (“Correct,” “Incorrect,” or “No Response”) for 0.5 s.
Between each trial, a fixation cross was displayed for 4.0 s.
There were four context-dependent cue-associate pairings that
subjects encountered during the scan, and they are described in
Figure 1. Scanning consisted of nine runs, with 32 trials per run.

Behavioral Data Analysis

Accuracy was calculated for each subject across each of the nine
scanning runs. Each scanning run consisted of 32 trials of the
context-dependent rule learning task, and subject performance
was used as a measure of when (and if) subjects shifted from
“learning” to “learned” phases. With the task set up in a 2-
alternative forced choice format, we assumed that subjects who
had not yet learned the context-dependent rules would achieve
about 50% accuracy (16 correct responses per run) purely by
chance. Using the binomial distribution, we determined the
observed level of accuracy per run that would have a 0.1%
likelihood of occurring by chance, and set the threshold for
above-chance performance to 26 correct responses out of 32
trials per scanning run (or 81.25% correct). If a subject responded
correctly to at least 26 trials during one run, then that run was
classified as “learned.” Subjects were considered “successful”
learners if they achieved at least one “learned” scanning run.
Subject performance is presented in Figure 3.

MRI Data Acquisition

Scanning was conducted using a 3 Tesla Siemens TIM Trio mag-
netic resonance scanner and a 32-channel head coil at the Cen-
ter for Brain Science at Harvard University in Cambridge, Mas-
sachusetts. High-resolution T1-weighted multi-planar rapidly
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Brain Dynamics of Rule Learning Morin et al. 5513

Figure 1. Context-dependent rule learning task. (A) During each trial, the subject saw a fixation (4000 ms), followed by a cue stimulus (2000 ms), delay (2000 ms), and
an associate stimulus (2000 ms). Then, the subject was given 2000 ms to decide whether or not the cue image was correctly paired with the associate image. Subjects
indicated their response by pressing the left or right button on a response box. The trial ended with 500 ms of feedback (“Correct,” “Incorrect,” or “No Response”).
(B) Subjects were naïve to the fact that a context-dependent rule structure dictated whether cue and associate stimuli were correctly paired. If the cue and associate

appeared in Quadrant I or III (highlighted here in blue for emphasis), they obeyed one set of rules (e.g., the tiger and paint-palette are a pair). If instead the cue and
associate appeared in Quadrant II or IV (yellow), they obeyed an alternate set of rules (e.g., the tiger and grill are now a match). Subjects were tasked with learning
these context-dependent pairings over the course of nine scanning runs. Each scanning run consisted of 32 trials of the task.

acquired gradient echo (MP-RAGE) scans were acquired for each
subject (TR = 2530 ms; TE = 1.64 ms; flip angle = 7◦; slices = 176;
resolution = 1 mm isotropic). T2∗-weighted EPI (BOLD) images
were acquired using a slice-accelerated EPI sequence that per-
mitted simultaneous multi-slice acquisitions using the blipped-
CAIPI technique (TR 2 s; TE 26 ms; flip angle 80◦; 6/8 partial-
Fourier acquisition) (Setsompop et al. 2012). A total of 69 slices
were acquired with a slice acceleration factor of 3 and no skip,
covering the whole brain. Images were acquired at a nominal
2-mm isotropic spatial resolution (matrix size: 108 × 108).

fMRI Preprocessing

Functional data were analyzed using the Freesurfer FS-FAST
software package (version 6.0, Charlestown, MA; http://surfer.
nmr.mgh.harvard.edu/) (Fischl 2012). The following preprocess-
ing steps were performed: slice-time correction, motion correc-
tion, spatial smoothing (3 mm FWHM), boundary-based regis-
tration with 12-degrees of freedom to co-register each subject’s
functional and anatomical data, and spatial normalization of
each subject’s reconstructed surface to Freesurfer’s standard
template (fsaverage) using spherical surface registration. Func-
tional data were further preprocessed in MATLAB (The Math-
Works). Head-motion regression (6 motion parameters and their
6 temporal derivatives), whole-brain signal regression, and ven-
tricular and white matter signal regression were performed (Van
Dijk et al. 2010). Additionally, our matrix of nuisance regres-
sors included two event-related regressors corresponding to the

Response and Feedback events in the task. For the Response
events, regressors were created by convolving a standard hemo-
dynamic response function with a duration-modulated boxcar,
where boxcars were scaled by the subject’s response time on a
per-trial basis. Similarly, the Feedback regressors were created by
convolving the same standard hemodynamic response function
with a boxcar enveloping the length of the feedback period
(0.5 s). We included these event-related regressors to ensure that
observed changes in network connectivity were associated with
rule learning, rather than differences in response times or feed-
back presentation between successful and unsuccessful learn-
ers. We then calculated framewise displacement by taking the
sum of the absolute derivatives of the 6 motion parameters for
each time point (Power et al. 2012). A threshold of 0.5 mm was set
to identify time points with excessive motion. To avoid artifact
spread during wavelet decomposition, high motion timepoints
were replaced using linear interpolation (Carp 2013).

Network Construction

From the 2018 Schaefer-parcellation, we defined 400 cortical
regions of interest across the two brain hemispheres (200
per hemisphere, see Fig. 2; Schaefer et al. 2018). For each
subject and each run of data, these 400 brain regions formed
the nodes of a network. To define edges between the nodes,
the mean BOLD signal time course was extracted from each
region and the wavelet correlation between time-courses for
each pair of regions (i, j) was calculated. Maximum overlap
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Figure 2. Network construction. (A) Inflated representation of cortex divided into 400 regions, each assigned to a Yeo-community (adapted with permission

from https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal). (B) Multilayer network of the connectivity
between regions in a single subject. Each brain region from (A) is represented by a node. Edges represent functional connectivity between regions. For clarity, only the
top 1% of strongest edges in each layer are shown here.

discrete wavelet transform was used to decompose a time-
course into scales corresponding to frequency bands (This
is identical to the methods used in Bassett et al. 2011. The
software for this method can be found at: http://grinsted.gi
thub.io/wavelet-coherence/.) We used scale 2 (0.0625–0.125 Hz)
in our analysis because this frequency overlaps most with
the canonical hemodynamic response function. In line with
previous research using wavelet methods to define network
edges, we calculated the Pearson correlation between scale 2
time courses (Bassett et al. 2011; Zhang et al. 2016). Our choice
of wavelet correlation over wavelet coherence means that
the network does include negative edges. Wavelet correlation
was most appropriate for our analysis because we calculated
functional connectivity measurements over an entire scanning
run (450 s of data, 225 TRs), and the non-stationarity of fMRI
time courses makes coherence measures inappropriate for
this large time scale (Bullmore et al. 2004; Zhang et al. 2016).
Edge weights in the network were subjected to significance
testing using the rcorr.adjust function in R. For a pair of nodes
i and j, if functional connectivity was deemed statistically
different from zero according to a liberal statistical threshold
(alpha = 0.05, Holm corrected for multiple comparisons), then
the weight of edge (i, j) remained the same. Otherwise, it was
set to zero, eliminating the edge from the graph. For each
subject, this resulted in nine network layers, spanning the
nine runs of fMRI scanning. For all network statistics and
clustering methods described below (except for betweenness
centrality), we included both positive and negative edge weights.

When calculating betweenness centrality, we only included
positive edge weights. This is because betweenness centrality
calculations depend on deriving shortest paths between pairs
of nodes, a problem that is ill-defined for nodes connected by
negatively-weighted edges. Although including negative edge
weights can complicate the interpretation of network measures,
we chose to include negative edge weights when possible.
Previous work indicates that negative edges are physiologically
meaningful, indicating segregation or competition between
regions (Fox et al. 2005; Rubinov and Sporns 2011; Keller et al.
2013). (For additional discussion on the inclusion of negative
edges, see: Schwarz and McGonigle 2011; Fornito et al. 2015).
Finally, only 3.5% of the within-layer edges were negatively
weighted in our subjects’ networks, suggesting that their overall
influence on network measures is small.

Dynamic Community Detection and Flexibility

For community detection and node flexibility calculations, we
combined the nine network layers into a single dynamic net-
work for each subject. In the dynamic network, each layer cor-
responded to one of the nine scanning runs, ordered in time.
Networks were linked across time by connecting each node in
one layer to itself in the immediately adjacent layers. Inter-layer
edges were equally weighted, ω = 1.

To determine the community membership(s) of each node
over time, we used a Louvain community detection algorithm
that is generalized for multi-layered networks (Mucha et al.
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2010). MATLAB code for the algorithm was produced by Mucha
and Porter and is freely available online: http://netwiki.amath.u
nc.edu/GenLouvain/GenLouvain. The algorithm detects com-
munities by optimizing multilayer modularity, Qml (originally
presented in this format by Bassett et al. 2011):

Qml = 1
2μ

∑
ijlr

{(
Aijl − γl

kilkjl

2ml

)
δlr + δijωjlr

}
δ
(
gil, gjr

)
, (1)

where the adjacency matrix of layer l (e.g., scanning run
number l) has components Aijl, γl is the resolution parameter
of layer l, gil gives the community assignment of node i in layer
l, gjr gives the community assignment of node j in layer r, the
function δ(gil, gjr) is 1 when gil = gjr and 0 otherwise, ωjlr is the
connection strength between node j in layer r and node j in layer
l, kil is the strength of node i in layer l, ml is half the sum of all the
edge weights in layer l, 2μ = ∑

jr κjr, κjl = kjl +ωjl, and ωjl = ∑
rωjlr.

We set ω = 1 for edges connecting the same node in adjacent
layers and set the resolution parameter γl = 1.

By this definition, modularity is minimized when strongly
connected groups of nodes (both within and between layers) are
part of the same community. The between-layer connectivity
strength is summarized by the term δijωjlr, and the within-layer

connectivity strength is summarized by the term (Aijl −γl
kilkjl
2ml

)δlr.
This algorithm allows a node to change its community alle-
giance across layers. See Mucha et al. (2010) for details on precise
methods and implementations. Note, the community detection
algorithm discussed here is a data-driven approach. The com-
munities it assigns are unrelated to the canonical resting state
communities (Yeo-communities) that are discussed elsewhere
in this paper. The Yeo-communities were determined a priori
with a parcellation developed by Schaefer et al. (2018), without
any influence from our subjects’ fMRI data.

After running the community detection algorithm, we cal-
culated flexibility for each node by counting the number of
times a node switched communities and dividing by the possible
number of switches (There were eight possible switches, since
our network had nine layers.) Because the outcome of the com-
munity detection algorithm depends on initial conditions (e.g.,
which node is first assigned to a community), we ran the algo-
rithm 100 times for each subject, calculating average flexibility
for each node across iterations.

Whole brain average flexibility was determined for each
subject by taking the mean flexibility across all vertices. The
average flexibility was also determined for each of the seven
Yeo-communities (Yeo et al. 2011). Average flexibility for the
whole brain is plotted against accuracy on the cognitive task for
each subject in Figure 4A. To visualize the spatial distribution of
flexibly-changing nodes on cortex, and the relationship of flex-
ibility with accuracy, we projected the group mean correlations
between the flexibility of an individual node and subject accu-
racy onto the cortical surface in Figure 4B. Average flexibility
for each of the seven Yeo-communities is plotted against task
accuracy in Figure 4C. The relationship between flexibility and
learning was assessed through Pearson correlation using the
cor.test function in R, the results of which are summarized in
Table 1 (P-values FDR corrected).

Assortative Mixing

To determine whether brain regions connected mostly to other
regions in the same Yeo-community and the extent to which

this differed over time and across successful and unsuccess-
ful learners, we calculated assortative mixing for each Yeo-
community. We performed these calculations within each layer
of a subject’s network to determine the assortative mixing of
Yeo-communities for each scan run. To calculate assortative
mixing, we used the assortativity function in the igraph package
available for R, which uses Newman’s definition of assortativity
(Newman 2003):

r =
∑

i e
(
i, i

) − ∑
ia(i)b(i)

1 − ∑
ia(i)b(i)

(2)

where e(i, j) is the fraction of edges connecting nodes labeled
i and j, a(i) = ∑

je(i, j), and b(j) = ∑
ie(i, j). When calculating

e(i, j), negative edges subtract from the numerator, but add to
the denominator. In this way, negative within-category edges
decrease assortativity. Assortativity r is equal to one when there
is perfect assortative mixing (all edges are within-category).
Similarly, it is equal to zero when the mixing is completely
random and r approaches −1 when mixing is disassortative
(edges on the graph connect vertices with other vertices outside
of their category). We calculated separate assortativity measures
for each Yeo-community by re-labeling the nodes of the graph
with only two labels: nodes within the community being mea-
sured, and those outside of the community being measured.
Assortativity across communities, subjects, and scan runs is
plotted in Figure 5A and summarized in Table 2 (P-values FDR
corrected).

Centrality

To determine which brain regions integrated information
from many other brain regions, and whether this was altered
with time and task performance, we calculated the average
betweenness centrality for each of the seven Yeo-communities
across subjects and scanning runs. Betweenness centrality was
originally defined by Freeman (1978) and is defined by Kolaczyk
(2009) as:

cB(v) =
∑

s�=t �=v∈V

σ (s, t|v)

σ (s, t)
(3)

where σ(s, t|v) is the number of shortest paths from s to t that
include v, and σ(s, t) is the total number of shortest paths from
s to t. Betweenness centrality is high for vertices that are on
the shortest paths between many other nodes. Betweenness
centrality is ill-defined for networks with negative edge-weights,
so we eliminated all negative edges from our networks for this
analysis. Additionally, because betweenness centrality relies on
a shortest path metric, edges on the graph were transformed
from a metric of strength (wavelet correlation) to a metric of
distance, using the inverse transform (1/Aij). We then calculated
betweenness centrality using the betweenness function avail-
able in the igraph library for R. Betweenness centrality across
communities, subjects, and scan runs is plotted in Figure 5B and
displayed in Table 3 (P-values FDR corrected).

Inter-Community Edge Strength

To determine how connectivity between the Yeo-communities
changed with learning, we calculated the average weight of
inter-community edges for each scanning run. The inter-
community edge strength between two communities i and j

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/31/12/5511/6328819 by Brandeis Library user on 14 D

ecem
ber 2022

http://netwiki.amath.unc.edu/GenLouvain/GenLouvain
http://netwiki.amath.unc.edu/GenLouvain/GenLouvain


5516 Cerebral Cortex, 2021, Vol. 31, No. 12

Figure 3. Rule learning ability. Behavioral results. Subject accuracy is plotted here over time. Time points represent each of the 9 scanning runs (32 trials per run).

Subjects who achieved accuracy significantly above chance in at least one run are considered successful learners and plotted in blue (n = 20). Accuracy measurements
for unsuccessful learners are plotted in red (n = 9).

is defined as:

s
(
i, j

) =
∑

i�=j wij

nij
(4)

where wij is the weight of an edge connecting a node in commu-
nity i with a node in community j and nij is the total number of
edges connecting communities i and j. This was calculated using
the simplify function available in the igraph library for R. Nega-
tive edges decrease the overall inter-community edge strength
between two communities. We plotted the time-varying inter-
community edge strength for each pair of communities in both
successful and unsuccessful learners in Figure 6. Statistics are
reported in Table 4 (P-values FDR corrected).

Dynamic Network Statistics

To test how assortative mixing, betweenness centrality, and
inter-community edge strength differed between learning
groups and changed throughout learning, we estimated two
linear mixed effects models implemented with the lme4
package in R. With the first model (Model 1) we examined the
effects of learning group (successful or unsuccessful) and time
on each of the network measures. The model included fixed
effects for learning group, time (scan run), and the interaction
between learning group and time, as well as a random effect
of subject. We report results where the intercept varied across
subjects. We also conducted a version of Model 1 allowing slope
to vary for each subject, but this model failed to converge and
fit poorly in most circumstances, so we do not report it here.
A second model (Model 2) was used to test the effect of each
subject’s unique learning curve (measured as each subject’s
accuracy on each scan run) on the network metrics. This model
included fixed effects for run-to-run accuracy as well as overall
task accuracy to control for between-subject differences in
overall performance. The model also included a random effect of
subject. Both models were fit to data for each of the seven Yeo-
communities (or each pair of communities, in the case of inter-

community edge strength). We applied a false discovery rate
(FDR) correction for multiple comparisons across communities
and model parameters (Benjamini and Hochberg 1995). Unless
otherwise noted, all reported P-values have been corrected using
FDR correction.

Results
Behavioral Results

As expected, performance on the cognitive task varied consid-
erably across subjects. Subject accuracy over time is displayed
in Figure 3. A few subjects learned the context-dependent rules
and achieved ceiling-levels of accuracy in just two or three
scanning runs. Other subjects remained at chance-levels of
accuracy throughout. Subjects who remained at chance-level
performance throughout all nine scanning runs were consid-
ered “unsuccessful” learners, and subjects who achieved above-
chance performance on at least one scan run were considered
“successful” learners. Overall, 20 subjects met criteria as suc-
cessful learners and 9 subjects were unsuccessful. The variation
in learning ability provided us with a natural control group for
identifying functional network characteristics associated with
successful rule learning.

Network Stability and Community Switching

To examine functional network architecture changes over the
course of the task, we can measure the community switching
(flexibility) of a given brain region. As a working model, we
proposed that during learning, brain regions flexibly adapted
their community allegiance as subjects adopted different task
strategies. Once the task was learned, the community structure
became more rigid (less flexible). Subjects with greater accu-
racy spent more time in the “learned” phase than the “learn-
ing” phase. Therefore, we predicted that overall accuracy would
be inversely related to flexibility and hypothesized that sub-
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Brain Dynamics of Rule Learning Morin et al. 5517

Figure 4. Flexibility. (A) Whole-brain average flexibility is plotted against accuracy on the cognitive task for each subject. (B) Cortical map of the correlation between
flexibility for each of the nodes in the Schaefer400 atlas and overall accuracy. (C) Average flexibility within each of the seven Yeo-communities is plotted against

task accuracy. Trend lines show a linear regression between flexibility and accuracy. Gray area represents a 95% confidence interval. ∗ denotes statistically significant
correlation; P < 0.05, FDR corrected. All correlation statistics are presented in Table 1.

Table 1 Relationship between accuracy and flexibility

Community Correlation of accuracy and flexibility

r T(28) P

Visual −0.02 −0.11 0.92
Somato-motor −0.53 −3.23 <0.05
Dorsal attention −0.25 −1.31 0.32
Ventral attention −0.52 −3.20 <0.05
Limbic −0.19 −1.01 0.43
Cognitive control 0.33 1.81 0.22
Default 0.14 0.71 0.55
Whole brain avg. −0.25 −1.36 0.32

Notes: Pearson correlation was calculated to assess the relationship between accuracy on the cognitive task and flexibility of brain regions; repeated for each Yeo-
community and across the whole brain. r = Pearson correlation coefficient; T(28) = T-statistic with degrees of freedom of 28; P = adjusted P-value (FDR corrected). Bold
results show a statistically significant relationship between accuracy on the task and brain-region flexibility, P < 0.05, FDR corrected for multiple comparisons.

jects with greater accuracy on the cognitive task would exhibit
decreased brain network flexibility, consistent with the rapid
development of stable rule representations.

We plotted mean flexibility across the whole brain against
subject accuracy in Figure 4A. We did not observe a signif-
icant association between overall accuracy on the task and
whole-brain mean flexibility. In Figure 4B, we projected the
correlation between accuracy and flexibility for each node in
the Schaefer-400 atlas onto the cortical surface. A regional
pattern emerged with certain areas showing consistently
high or low correlation between accuracy and flexibility. To

determine if certain Yeo-communities were driving this result,
we plotted the average flexibility for each community against
accuracy in Figure 4C. We found a statistically significant
Pearson correlation coefficient between flexibility and accuracy
in the ventral attention community (r = −0.524, P < 0.05) as well
as in the somatomotor community (r = −0.527, P < 0.05) (FDR
corrected for multiple comparisons). We failed to detect a
significant correlation in any of the other Yeo-communities.
The correlation coefficients and corresponding P-values for all
seven Yeo-communities and the whole brain are displayed in
Table 1.
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Figure 5. Community assortativity and betweenness centrality. (A) Community assortativity and (B) mean betweenness centrality of the nodes in each Yeo-community

were calculated for each of the 9 scanning runs for each subject. Points are colored blue for subjects who successfully learned the task, and red for subjects who did
not learn the task. Linear regression of changes in assortativity and betweenness centrality for each group over time are plotted. Gray area surrounding regression
lines represents a 95% confidence interval. Two linear mixed effects models were used to assess the effects of learning group and time (Model 1) as well as the effect

of run-to-run accuracy (Model 2) on the network measures. Model results are presented in Tables 2 and 3. £ = Effect of Learning Group; † = Effect of Time; ∗= Effect of
Learning Group x Time Interaction; ‡ = Effect of Run-to-Run Accuracy, Controlling for Overall Accuracy (P < 0.05, FDR corrected).

Assortative Mixing

Assortative mixing is defined here as the degree to which
nodes are highly connected with other nodes in the same Yeo-
community. A positive value for assortative mixing indicates
that nodes within a community are more strongly connected to
each other than they are to nodes outside of their community.
We predicted that assortative mixing would be stronger in
successful learners, which would correspond to the formation
of stable, modular networks and the predicted decrease in node
flexibility. For each of the seven Yeo-communities, we calculated
assortative mixing during each scanning run. Results are dis-
played in Figure 5A. Using two linear mixed effects models, we
tested the effects of learning, time, and the interaction between
learning and time on assortativity (Model 1), as well as the effect
of run-to-run accuracy on assortativity while controlling for the
effect of overall accuracy (Model 2). Model results are presented
in Table 2. Model 1 showed a significant interaction between
learning and time on assortativity in the cognitive control
community (T = 2.70, P < 0.05). Post hoc testing with the lstrends
command in R showed that the slope of assortativity over time
was significantly different between successful learners, who

showed an increase in assortativity over time, and unsuccessful
learners, who showed a decrease in assortativity over time.
However, each group’s slope itself did not significantly differ
from zero (successful learners: slope = 0.0022, T = 1.69, P = 0.093;
unsuccessful learners: slope = −0.0034, T = −1.73, P = 0.086).
This result indicated that the interconnectivity of cognitive
control nodes showed a more positive trend over time in
successful learners than in unsuccessful learners, albeit without
supporting strong conclusions about the sign of the trend in
each group individually. Echoing this finding, Model 2 showed a
significant positive effect of run-to-run accuracy on assortativity
in the cognitive control community, even when controlling
for overall accuracy (T = 2.60, P < 0.05). This indicates that
changes in assortativity of the cognitive control community
were significantly associated with individual learning curves
across subjects.

Centrality

Centrality measures the degree to which a brain region acts
as a mediator between distantly connected brain regions. We
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Table 2 Linear mixed effects models for assortativity

Community Model 1 Model 2

Learning Time Learning∗ time Overall acc. Acc. per run

Effect P Effect P Effect P Effect P Effect P

Visual 0.07 0.12 0.003 0.43 –0.003 0.54 0.20 <0.05 0.01 0.90
Somatomotor 0.04 0.36 –0.004 0.36 0.004 0.45 0.22 <0.05 0.01 0.90
Dorsal attn. 0.04 <0.05 –0.001 0.43 0.000 0.82 0.12 <0.05 –0.002 0.90
Ventral attn. 0.03 0.15 0.001 0.73 –0.001 0.82 0.07 0.13 0.014 0.55
Limbic 0.01 0.20 0.000 0.90 –0.001 0.62 0.05 <0.05 –0.017 0.19
Cognitive ctrl –0.003 0.90 –0.003 0.20 0.005 <0.05 0.01 0.90 0.041 <0.05
Default 0.03 0.54 –0.003 0.41 0.004 0.28 0.20 <0.05 –0.008 0.90

Notes: Results from two linear mixed effects models that were run for each of the seven Yeo-communities. Model 1 treated each subject as a random effect and
included fixed effects for learning group (successful or unsuccessful), time, and the interaction between learning group and time. Model 2 treated each subject as a
random effect and included fixed effects for overall accuracy and time-varying accuracy (per run). P = adjusted P-value (FDR corrected). Bold results show a statistically
significant effect, P < 0.05, FDR corrected for multiple comparisons.

Table 3 Linear mixed effects models for betweenness centrality

Community Model 1 Model 2

Learning Time Learning∗ time Overall acc. Acc. per run

Effect P Effect P Effect P Effect P Effect P

Visual 40.60 0.04 −10.122 0.952 −1.98 0.39 119.87 <0.01 −122.53 0.21
Somatomotor 37.84 0.06 −12.406 0.165 1.37 0.56 149.08 <0.01 −10.98 0.95
Dorsal attn. 41.07 0.15 −11.049 0.727 −10.80 0.86 129.02 <0.05 −113.75 0.57
Ventral attn. 27.54 0.25 −11.899 0.391 −10.23 0.95 145.43 <0.01 −41.09 <0.05
Limbic 21.95 0.12 2.233 0.097 −11.60 0.35 59.91 <0.05 7.46 0.57
Cognitive ctrl 45.41 0.06 −10.280 0.952 −11.05 0.73 150.84 <0.01 −12.14 0.95
Default 41.30 0.06 −12.039 0.286 0.11 0.95 151.09 <0.01 −111.32 0.57

Notes: Results from two linear mixed effects models that were run for each of the seven Yeo-communities. Model 1 treated each subject as a random effect and included
fixed effects for learning group (successful or unsuccessful), time, and the interaction between learning group and time. Assessed the effects of learning, time, and
the interaction between learning and time. Model 2 treated each subject as a random effect and included fixed effects for overall accuracy and time-varying accuracy
(per run). P = adjusted P-value (FDR corrected). Bold results show a statistically significant effect, P < 0.05 , FDR corrected for multiple comparisons.

calculated mean betweenness centrality across nodes in each of
the seven Yeo-communities during each scanning run. Results
from this analysis are plotted in Figure 5B. Using two linear
mixed effects models, we tested the effects of learning, time, and
the interaction between learning and time on betweenness cen-
trality (Model 1), as well as the effect of time-varying accuracy on
betweenness centrality while controlling for the effect of overall
accuracy (Model 2). Model results are presented in Table 3. Model
1 did not reveal any significant interactions between learning
and time. Model 2 showed that when controlling for overall accu-
racy, increased run-to-run accuracy is significantly associated
with reduced betweenness centrality in the ventral attention
community (T = −2.32, P < 0.05).

Inter-Community Edge Strength

Inter-community edge strength is a measure of connectivity
between a pair of Yeo-communities, and can tell us how
communication between two communities changes during
learning. We predicted that in successful learners, we would
observe a greater decoupling of the default community from
the dorsal/ventral attention communities. Previous research
has indicated that decoupling of default and attention systems
is associated with better working memory and overall fluid

intelligence scores (Cole et al. 2012; Keller et al. 2015). Inter-
community edge strength is plotted over time for each pair
of Yeo-communities and for both successful and unsuccessful
learners in Figure 6. Using two linear mixed effects models,
we tested the effects of learning, time, and the interaction
between learning and time on inter-community edge strength
(Model 1), as well as the effect of time-varying accuracy on
inter-community edge strength while controlling for the effect
of overall accuracy (Model 2). Model results are presented
in Table 4. The results support our hypothesis, showing that
successful subjects had greater decoupling between default
and attention communities. However, the results indicate that
this is largely driven by an overall decoupling of the dorsal
and ventral attention communities from most other Yeo-
communities in successful learners, rather than a specific
decoupling of attention systems from the default community.
Model 1 showed that compared to unsuccessful learners, the
dorsal attention community in successful learners showed
significantly reduced inter-community edge strength with
visual (T = −2.71, P < 0.05), somatomotor (T = −3.67, P < 0.01),
ventral attention (T = −2.92, P < 0.05), and limbic (T = −3.01,
P < 0.05) communities. Reduced inter-community edge strength
between the dorsal attention and default communities was
only significant before FDR correction for multiple comparisons
(T = −2.40, P = 0.06). Similarly, the ventral attention community
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Figure 6. Inter-community edge strength. Inter-community edge strength plotted over time for each pair of Yeo-communities. Points represent mean inter-community
strength across subjects in each group: successful learners are colored blue and unsuccessful learners are colored red. Time points represent each of the 9 scanning
runs (32 trials per run). Error bars represent standard error. Two linear mixed effects models were used to assess the effects of learning group and time (Model 1) as
well as the effect of run-to-run accuracy (Model 2) on the network measures. Model results are presented in Table 4. £ = Effect of Learning Group; † = Effect of Time; ∗=

Effect of Learning Group × Time Interaction; ‡ = Effect of Run-to-Run Accuracy, Controlling for Overall Accuracy (P < 0.05, FDR corrected).

in successful learners showed significantly reduced inter-
community edge strength with visual (T = −3.01, P < 0.05),
dorsal attention (T = −2.92, P < 0.05), cognitive control (T = −3.58,
P < 0.01), and default (T = −2.55, P < 0.05) communities. Reduced

inter-community edge strength between the ventral attention
and limbic communities was only significant before FDR
correction (T = −2.39, P = 0.06). Interestingly, Model 2 showed
several pairs of Yeo-communities in which inter-community
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Table 4 Linear mixed effects models for inter-community edge strength

Community 1 Community 2 Model 1 Model 2

Learning Time Learning∗ Time Overall Acc. Acc. Per Run

Effect P Effect P Effect P Effect P Effect P

Visual Somatomotor −0.07 <0.01 −0.004 0.16 0.007 <0.05 −0.14 <0.01 0.031 0.21
Visual Dorsal attn. −0.04 <0.05 0.001 0.50 0.001 0.72 −0.13 <0.01 0.032 0.07
Visual Ventral attn. −0.06 <0.05 −0.002 0.39 0.005 0.09 −0.13 <0.05 0.031 0.21
Visual Limbic −0.09 0.09 0.002 0.76 0.004 0.59 −0.29 <0.01 0.031 0.51
Visual Cognitive ctrl −0.03 0.52 0.005 0.32 −0.004 0.56 −0.18 <0.05 0.015 0.72
Visual Default −0.09 0.09 −0.001 0.86 0.004 0.48 −0.32 <0.01 0.038 0.38
Somatomotor Dorsal attn. −0.06 <0.01 0.002 0.56 0.001 0.72 −0.19 <0.01 0.022 0.35
Somatomotor Ventral attn. −0.04 0.13 0.002 0.31 0 0.90 −0.13 <0.01 0.016 0.44
Somatomotor Limbic −0.06 0.155 0.003 0.50 0.003 0.63 −0.25 <0.01 0.102 <0.01
Somatomotor Cognitive ctrl −0.01 0.863 0.006 0.47 −0.01 0.32 −0.08 0.59 −0.08 0.27
Somatomotor Default −0.09 <0.05 0.001 0.86 0.005 0.33 −0.36 <0.01 0.114 <0.01
Dorsal attn. Ventral attn. −0.05 <0.05 0.002 0.28 0.001 0.76 −0.16 < 0.01 0.031 0.10
Dorsal attn. Limbic −0.19 <0.05 0.009 0.28 0.003 0.76 −0.64 <0.01 0.076 0.29
Dorsal attn. Cognitive ctrl −0.01 0.788 0.003 0.25 −0.001 0.76 −0.08 0.08 0.02 0.37
Dorsal attn. Default −0.16 0.06 0.007 0.32 −0.002 0.84 −0.67 <0.01 0.046 0.48
Ventral attn. Limbic −0.11 0.061 0.003 0.59 0.001 0.90 −0.40 <0.01 0.018 0.72
Ventral attn. Cognitive ctrl −0.13 <0.01 0.003 0.63 0.009 0.10 −0.41 <0.01 0.106 <0.05
Ventral attn. Default −0.12 <0.05 0 0.95 0 0.97 −0.46 <0.01 0.003 0.94
Limbic Cognitive ctrl −0.07 0.204 0.006 0.32 −0.001 0.90 −0.28 <0.05 0.023 0.64
Limbic Default −0.01 0.495 0.003 <0.05 −0.002 0.49 −0.07 0.08 0.009 0.59
Cognitive ctrl Default −0.07 0.158 0.005 0.26 −0.001 0.86 −0.32 <0.01 0.05 0.29

Notes: Results from two linear mixed effects models that were run for each pair of the seven Yeo-communities. Model 1 assessed the effects of learning, time, and the
interaction between learning and time, on inter-community edge strength. Model 2 assessed the effects of overall accuracy and time-varying accuracy (on a per-run
basis) on inter-community edge strength. P = adjusted P-value (FDR corrected). Bold results show a statistically significant effect, P < 0.05, FDR corrected for multiple
comparisons.

edge strength was strongly associated with time-varying
accuracy on the task. These pairs were somatomotor—default
(T = 3.39, P < 0.01), somatomotor—limbic (T = 3.06, P < 0.01), and
ventral attention—cognitive control (T = 2.58, P < 0.05).

Discussion
We performed a dynamic network analysis to identify functional
brain network changes associated with individual differences
in learning a set of context-dependent rules. We propose that
a stable ventral attention community supports maintenance of
sustained attention in successful learners, and that dynamic
changes in assortativity and inter-community edge strength
of the cognitive control community are associated with the
formation of context-dependent rule representations, and task
automaticity. These results highlight key brain network features
that are associated with successful learning.

Network Stability

In line with our predictions, we found that participants with
greater overall accuracy on the task exhibited decreased average
community switching (flexibility) within the ventral attention
and somatomotor communities (see Figure 4C, Table 1). We view
decreased network flexibility as increased network stability, and
in successful subjects this stability correlates with their high
accuracy and representation of the context-dependent rules.

Considering the ventral attention community, previous work
on rule learning has identified vlPFC and pre-SMA as regions

important for representing specific rules, and suppressing activ-
ity from a previous task set respectively (Crone, Donohue, et al.
2006a; Crone, Wendelken, et al. 2006b). Moreover, recently pub-
lished work in non-human primates shows that neuronal pop-
ulation activity in the dorsal anterior cingulate cortex, another
prominent node in the ventral attention community, reflects the
search for new rules in a categorical rule-learning task (Cohen
et al. 2021). For successful learners on our task, it is likely bene-
ficial for these regions to have stable connectivity and reduced
community switching as they actively represent learned rules.
Considering the somatomotor community, previous work using
recordings from motor cortex in non-human primates demon-
strates that rules are most easily learned when they are aligned
with the intrinsic network activity of this region (Sadtler et al.
2014). Reduced flexibility observed in our successful subjects
could reflect a reduced change in somatomotor community
activity during rule implementation compared to rest.

Our results complement previous studies of network flexibil-
ity where lower overall flexibility was observed in somatomotor
cortex compared to other brain regions (Bassett et al. 2011;
Betzel et al. 2017; Gerraty et al. 2018). Several studies have also
identified a positive association between learning and flexibility
in frontoparietal cortical regions (Bassett et al. 2011; Braun et al.
2015; Gerraty et al. 2018). While not statistically significant in
our study, we did observe a positive association between flexi-
bility and accuracy in the cognitive control community (r = 0.22,
T = 1.81, P = 0.22). In our study, we identified two communities
that showed greater stability associated with overall accuracy
on the task. This is in line with several large-scale studies that
have identified network stability as a key feature contributing
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to general intelligence and overall cognitive ability (Schultz and
Cole 2016; Ferguson et al. 2017).

Previously, studies of network flexibility and learning have
employed homogeneous samples of learners whose learning
improved over time (Bassett et al. 2011; Gerraty et al. 2018).
Our study expands upon previous work with the inclusion of
unsuccessful subjects who never learned the context dependent
rules. These subjects comprised a natural control group that
allowed us to identify individual differences in brain network
structure associated with learning. Additionally, in our study
we capture the full learning curves of successful subjects, from
the beginning phases of learning, up until performance has
plateaued and high accuracy is achieved.

While we highlight the reduced flexibility of the ventral
attention community as a key feature of successful learning, we
also found changes in the centrality and inter-community edge
strength of this community that are associated with learning.
It is not necessarily true that a node with low flexibility has
unchanging functional connectivity. Rather, a node with low
flexibility is part of a stable community. With Louvain commu-
nity detection in particular, emphasis is put on creating modu-
lar networks, where intra-community connections are stronger
than inter-community connections (Mucha et al. 2010). A stable
community might exhibit low flexibility (the nodes within the
community stay a part of that community), but be changing
its connectivity with other communities. The community main-
tains low flexibility by ensuring that all members alter their
connectivity patterns together.

Cognitive Control

In the cognitive control community, we observed a significant
interaction effect between learning group and time on assor-
tative mixing (Table 2, Model 1). Assortative mixing showed a
greater increase over time in successful learners than in unsuc-
cessful learners. Complementing this result, we also found a
significant positive association between assortative mixing in
the cognitive control community and run-to-run accuracy on the
task (Table 2, Model 2).

Brain regions within the cognitive control community are
understood to be responsible for higher order executive func-
tioning, including response inhibition, working memory, and
planning (Vincent et al. 2008; Nyhus and Barceló 2009; Watson
and Chatterjee 2012). A large body of work proposes that rules
are represented in prefrontal cortex for the purpose of direct-
ing top-down attention (for review, see Miller and Buschman
2014). Additionally, frontoparietal cortex is implicated in strate-
gic access to memory (Badre and Wagner 2007) and memory
guided attention (Rosen et al. 2016).

Successful context-dependent rule learning on our task could
be conceptualized as the ability to create a task-set structure
during uninstructed learning. Modeling work suggests that the
creation of task sets could be accomplished through cognitive
control and executive functioning (Collins and Frank 2013). A
potential mechanism by which the cognitive control community
could direct attention is by mediating the decoupling of default
and dorsal attention communities, and titrating the balance
between inward and outward awareness (Spreng et al. 2013).
For successful learners, the context-dependent rule task quickly
became automatic, and an increase in assortativity may be
reflective of decreased dependence on, or more efficient pro-
cessing within the cognitive control community for directing

top-down attention. This framework is in line with theories sug-
gesting that cognitive control connectivity adaptively reconfig-
ures to meet task demands, primarily through a set of connector
hubs (Gratton et al. 2016; Gordon et al. 2018; Gratton, Sun, et al.
2018a; Gratton, Cooper, et al. 2018b). As a working hypothesis,
we propose that as learning occurs, executive control over net-
work configuration becomes more efficient and the cognitive
control community becomes more strongly connected to itself
and less widely integrated in the whole brain network. Similarly,
in unsuccessful learners, decreased assortative mixing of the
cognitive control community over time is reflective of continual
strategy updating as attempts at implementing rules remain
unsuccessful.

Interactions between Attention and Cognitive Control

We observed a positive association between run-to-run accuracy
on the task and inter-community edge strength of the cognitive
control and ventral attention communities (Table 4, Model 2).
Additionally, successful learners exhibited significantly lower
inter-community edge strength between attention communities
and most other communities throughout the brain (Table 4,
Model 1).

The vlPFC, pre-SMA, and dorsal anterior cingulate are promi-
nent regions in the ventral attention community that contribute
to rule learning (Passingham et al. 2000; Crone, Donohue, et al.
2006a; Crone, Wendelken, et al. 2006b; Cohen et al. 2021). The
ventral attention community is often associated with orienting,
as it is activated by novel stimuli and stimulus-driven shifts in
attention (Corbetta and Shulman 2002; Mantini et al. 2009; Kim
2014). While the Schaefer-400 atlas includes the vlPFC, pre-SMA,
and dorsal anterior cingulate as part of the “ventral attention”
community, other groups use varying labels and definitions
(Power et al. 2011; Yeo et al. 2011). One common framework refers
to the ventral attention community as the cingulo-opercular
network, and suggests that both the cognitive control commu-
nity and cingulo-opercular network work together to achieve
executive control (Gratton et al. 2016; Gratton, Sun, et al. 2018a).

Research from Crittenden and colleagues showed increased
activity in both cingulo-opercular and cognitive control regions
during a rule-based associative memory task (Crittenden et al.
2016). Interestingly, they found that specific task rules were most
accurately decoded using signals from voxels within cognitive
control regions (which they call the frontoparietal network).
This led them to suggest that cognitive control regions con-
tain more specific rule-based representations, while cingulo-
opercular regions are more important for emphasizing event
salience and maintaining focused attention (Crittenden et al.
2016). This interpretation complements other work conceptu-
alizing the ventral attention community as a salience network
(Seeley et al. 2007) that plays a top-level role directing changes
in functional connectivity between cognitive control and other
communities throughout the brain (Sridharan et al. 2008; Menon
and Uddin 2010). Our study adds new evidence to this con-
ceptual framework, demonstrating that a stable ventral atten-
tion community contributes to steady maintenance of atten-
tion throughout the task, and a more flexible cognitive control
community demonstrates dynamic changes in assortativity and
inter-community edge strength associated with successful rule
learning.

We also observed a negative association between the
centrality of the ventral attention community and run-to-run
accuracy on the task (Table 3, Model 2). This suggests that as
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subjects learn the context-dependent rules, ventral attention
regions reduce their long-ranging functional connections with
other brain regions. Within the frameworks discussed above,
decreased centrality of the ventral attention community could
be reflective of more targeted salience to specific features of
the task. In concert with the increased inter-community edge
strength we observe between ventral attention and cognitive
control regions, these results suggest more targeted attention to
rule representations in successful learners.

Finally, we also observed reduced inter-community edge
strength between the dorsal/ventral attention communities and
most other communities in successful learners throughout the
entire task (Table 4, Model 1). This observation reflects the well-
known dissociation between default and attention systems of
the brain that is present at rest (Fox et al. 2005) and is modulated
by various tasks (Spreng et al. 2013; Keller et al. 2015; Dixon
et al. 2017). Miller and Buschman (2014) suggest that local
synchrony of neurons in attention and primary sensory areas
is essential for synchronizing mental representations with the
external world. More broadly, functional segregation of attention
communities could be advantageous for maintaining focused
attention during learning.

Conclusion
Our work expands upon previous studies of rule learning by
using a dynamic network analysis and focusing on brain-wide
connectivity. We identified several brain network characteris-
tics associated with individual differences in learning context-
dependent rules. These include decreased flexibility of the ven-
tral attention and somatomotor communities, functionally seg-
regated attention systems, and shifts in the cognitive control
connectivity associated with successful learning.
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