
Running Head: Optimizing fPET-FDG  

 

 

 

 

 

Optimizing fPET-FDG 

Thomas M. Morin 

Tufts University 

 

 

 

 

 

 

Author Note 

Thomas M. Morin, Departments of Psychology and Computer Science, Tufts University. 

 The author would like to thank Hsiao-Ying Wey, PhD, Elizabeth Race, PhD, Nathan 

Ward, PhD, Nicole Zürcher, PhD, Christine Wu, Bailey Hightower, and Jacob Hooker, PhD, for 

their guidance and support throughout this project. 

 Correspondence concerning this article should be addressed to Thomas Morin, 

Department of Psychology, Tufts University, 490 Boston Avenue, Medford, Massachusetts 

02155. Email: thomas.morin@tufts.edu 



OPTIMIZING	fPET-FDG	 	 2	

Abstract 

 Recent work by Villien, et al. presented the development of a new functional brain 

imaging method known as fPET-FDG (2014). With this method, it is possible to observe 

repeated task-specific changes in cerebral glucose metabolism during a single dynamic PET 

scan. Previously, the method has been limited to detecting these changes only at late time-points, 

20-30 minutes after the start of a scan. 

 We hypothesized that with an improved protocol for the administration of the 2-[18F]-

fluoro-deoxyglucose (FDG) radiotracer, we could detect task-specific changes in FDG signal at 

earlier time points than was previously possible. Simulations suggested that in order to detect 

these changes, we would require a specialized general linear model (GLM), different from that 

used in previous fPET-FDG studies. Using the new GLM, our study demonstrated the successful 

detection of these task-specific signal changes at early time points in one subject. Further work is 

needed to validate this model and to replicate it in other subjects. 

 Future optimization of the fPET-FDG methodology could allow us to examine dynamic 

changes in glucose metabolism associated with working memory, attention, and other areas of 

cognition. The fPET-FDG method could be especially useful in detecting real-time task-specific 

metabolic changes associated with various diseases such as diabetes. 
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Optimizing fPET-FDG 

 Over the last half century, the steady improvement of neuroimaging with positron 

emission tomography (PET) has made it a fundamental tool in the study of the human mind and 

brain. It has become common for most major research universities and hospitals to possess the 

necessary infrastructure to study brain function, whether it is through PET or a number of other 

technologies such as functional magnetic resonance imaging (fMRI) (Jones & Rabiner, 2012). 

Although fMRI is currently the preferred tool for functional brain imaging among neuroscientists 

and psychologists, some of the key foundational studies that formed the bedrock of this field 

were conducted with PET neuroimaging (Jones & Rabiner, 2012). 

 PET is a versatile tool that can be adapted to investigate a range of topics related to brain 

chemistry and function. Some of the most prominent applications of PET imaging to brain 

research include studies of endogenous neurotransmitter release, the binding characteristics of 

potential neuro-pharmaceuticals, and enzyme activity (Placzek, Zhao, Wey, Morin, & Hooker, 

2016). More recently, PET studies have even sought to investigate epigenetic changes in the 

human brain (Wey et al., 2016). In addition to drug-discovery ventures and the search for disease 

biomarkers, PET neuroimaging technologies are also commonly used to answer questions about 

brain function. 

Origins of Functional PET Imaging 

Some of the first experiments to study functional activity in the brain used water labeled 

with oxygen-15 ([15O]H2O) as a radiotracer to measure changes cerebral blood flow (CBF). By 

measuring regional changes in CBF with [15O]H2O, early studies successfully mapped the visual 

cortex (Endo et al., 1997; Fox et al., 1986),  identified brain areas associated with lexical 

processing (Petersen, Fox, Posner, Mintun, & Raichle, 1989), pinpointed brain regions important 
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in attention (Corbetta, Miezin, Dobmeyer, Shulman, & Petersen, 1990), and identified the “what” 

and “where” pathways associated with visual recognition (Haxby et al., 1991). 

These studies all utilized the same experimental paradigm: acquire one PET image while 

the subject is at rest as a control, and another image while the subject is completing a cognitive 

task. When the control image is subtracted from the task image, we are left with task-associated 

changes in PET signal (Fox, Mintun, Reiman, & Raichle, 1988). This method is referred to as the 

double-bolus method because it requires two-separate “bolus” injections of the radiotracer. 

Functional PET imaging methods of this sort served as part of the inspiration for the 

development of fMRI (Belliveau et al., 1991; Kwong et al., 1992). Without the need for an 

exogenous contrast or radioactive material, fMRI quickly gained popularity as a more user-

friendly and cost-effective alternative to PET. Moreover, with the development of echo planar 

imaging (EPI), fMRI’s temporal resolution (now on the order of seconds) quickly surpassed that 

of PET (now on the order of minutes). Today (April 4, 2017) a PubMed search for “functional 

MRI” produces 448,880 results, while a search for “functional PET” yields only 8,575.  

Early researchers who used [15O]H2O to measure functional brain activity faced several 

challenges. Because the [15O]H2O radiotracer decays rather quickly (15O has a half-life of only 

122 seconds), these early PET studies required careful planning and advanced resources. Studies 

with [15O]H2O require subjects to undergo several separate scans in order to repeat the task 

multiple times; once the radioactivity runs out from an initial dose of radiotracer, another dose 

must be administered. Because [15O]H2O has a particularly short half-life, an on-site cyclotron is 

also required to synthesize the tracer.  
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Functional Brain Imaging with FDG 

Another radiotracer that is commonly used in functional neuroimaging is 2-[18F]-fluoro-

deoxyglucose (FDG). As an analogue for glucose, FDG was developed to investigate the brain’s 

energy use through the quantification of cerebral glucose metabolism (Reivich et al., 1979). In 

the years since its first use in humans, FDG has helped scientists draw conclusions about changes 

in glucose metabolism that are associated with a wide array of mental disorders and brain 

diseases (for examples, see: Alexander, Chen, Pietrini, Rapoport, & Reiman, 2002; Paulesu et 

al., 1996).  

FDG’s continued utility and success as a radiotracer stems from its longer half-life of 

109.7 minutes and its optimized synthesis (Cole, Stewart, Littich, Hoareau, & Scott, 2014). 

Because it can be synthesized off-site and then delivered to the PET scanning bay, FDG is a 

more user-friendly radiotracer than [15O]H2O. A single dose of FDG administered intravenously 

can provide enough PET signal for longer dynamic scans of up to 90 minutes or more. 

FDG studies of functional brain imaging have traditionally made use of the double-bolus 

experimental design. Double-bolus experiments with FDG have allowed researchers to track 

changes in cerebral metabolic rate of glucose (CMRglu) associated with various 

cognitive/behavioral tasks and even pharmacological challenges (Hampson, Porrino, Opris, 

Stanford, & Deadwyler, 2011; Iozzo, Guiducci, Guzzardi, & Pagotto, 2012; Yehuda et al., 2009). 

However, the double bolus method suffers from several limitations. The static images captured 

by the double bolus method are only able to track changes that occur between two separate 

scans. These scans are often days, weeks, or even moths apart. This limits the amount of control 

experimenters have over external factors such as sleep, caffeine or food intake, and presents 

logistical issues when it comes time to co-register the two images (Villien, et al., 2014). 
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Recently, two studies have proposed and validated a new method for functional PET 

imaging with FDG that aims to overcome the limitations of the double bolus method (Hahn et 

al., 2016; Villien et al., 2014). Known as fPET-FDG, the method allows subjects to be presented 

with multiple cognitive tasks over the course of a single scan, in an experimental design similar 

to that which is commonly used in fMRI studies. The initial paper demonstrated that the fPET-

FDG method could successfully detect significant changes in FDG signal in area V1 of the visual 

cortex during presentation of a visual stimulus (Villien, et al., 2014). Additionally, fPET-FDG 

was sensitive enough to detect FDG signal changes in just one hemisphere of the brain when the 

stimulus was presented on one half of the subject’s visual field. Further work by Hahn, et al. 

revealed that the method was even sensitive enough to detect changes in FDG signal in the motor 

cortex during a finger-tapping task (2016). Both studies have shown that task-specific changes in 

FDG signal are associated with changes the cerebral metabolic rate of glucose (CMRglu), and that 

these changes in CMRglu can be quantified (Hahn, et al., 2016; Villien, et al., 2014).  

Kinetic Modeling of FDG 

The main goal of the fPET-FDG method is to examine how task-specific glucose 

metabolism differs across brain regions. However, the raw signal detected by the PET scanner is 

composed of more than just glucose that is being metabolized. The PET scanner will detect 

radioactivity wherever the FDG tracer is present, whether it is in the blood or inside of cells. 

Figure 1a shows three different configurations of FDG that contribute to the overall observed 

PET signal: (1) FDG in blood plasma, (2) FDG inside of cells, and (3) phosphorylated FDG 

inside of cells (figure adapted from Kelloff et al., 2005). Since fPET-FDG is concerned with 

glucose metabolism, we are most interested in the phosphorylated FDG; phosphorylation is the 

first step in the cellular metabolic process of glycolysis.  
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With kinetic modeling, we can parse out the portion of the overall signal that is 

contributed by phosphorylated FDG. The standard way of doing this is to construct a two-tissue 

compartment (2-TC) model (Figure 1b) (Bertoldo et al., 1998; Kelloff, 2005). The 2-TC model is 

built by considering each of the three different configurations of FDG as a single compartment. 

The FDG in blood plasma is summarized by the plasma compartment Cp. The two “tissue” 

compartments, C1 and C2, represent intracellular FDG and phosphorylated FDG respectively. We 

also define four rate-constants, K1 – k4, to describe the rate at which the radiotracer moves 

between each compartment. K1 is the rate of FDG-influx as it is carried from the blood stream, 

across the cell membrane, and into the cell by the Glut-1 transport protein. k2 is the rate of FDG-

efflux out of the cell and back into the bloodstream. k3 is the rate at which FDG is 

phosphorylated by the enzyme hexokinase, and k4 is the rate at which FDG is dephosphorylated 

by the enzyme Glucose-6-Phosphotase. When modeling FDG, k4 is often set to zero or close to 

zero because dephosphorylation by Glucose-6-Phosphotase occurs at a very slow rate in cerebral 

tissues (Bertoldo et al., 1998; Reivich et al., 1979; Sokoloff et al., 1977). 

With a compartment model in place, we can define a system of differential equations to 

describe the rate of change of FDG concentration in each of the two tissue-compartments over 

time (Figure 1c). As input, the system of differential equations requires (1) specific values for 

each of the rate constants k1 – k4, and (2) a function that represents the concentration FDG in the 

plasma compartment, defined as Cp(t). The rate constants k1 – k4 will differ depending on the 

tissue we are examining and the plasma input function will differ depending on how the 

radiotracer is injected. With the proper input, the system of differential equations can be solved 

and the concentration of FDG in each of the three compartments over time can be plotted as a 

time-activity curve (TAC).  
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Figure 1d shows TACs for each of the compartments in the 2-TC model when FDG is 

constantly infused for 60 minutes, and the rate constants are set to specific values. It is worth 

noting that the values chosen for rate constants can vary slightly between studies. In our 

simulations, we chose the values: K1 = 0.1, k2 = 0.2, k3 = 0.11, and k4 = 0.001 (O’Sullivan et 

al., 2010; Reivich et al., 1985). The red line represents the plasma input function Cp(t) which we 

provided to the model. The dashed blue and solid black lines represent the concentration of FDG 

over time in compartments C1 and C2 respectively. The purple curve represents the observed PET 

signal in brain tissue (a sum of the signals in C1 and C2). 

Motivation 

Despite its numerous successes, the fPET-FDG method faces several limitations that 

require further experimentation. Because the two initial studies were pilot studies, researchers 

used visual and finger-tapping tasks that were 5-10 minutes in duration (Hahn, et al., 2016; 

Villien, et al., 2014). By using such lengthy tasks, researchers could practically guarantee that 

they would detect any and all task-related signal changes. While it is believed that a better 

temporal resolution (tasks that are shorter than 5-10 minutes) may be possible, it has never been 

tested before. Additionally, the original fPET-FDG method requires an initial “equilibration 

period” of 20-30 minutes before participants can be tasked. This waiting time is required to 

ensure that an adequate amount of the radiotracer accumulates in the brain and is available for 

metabolism (Villien, et al., 2014). 

The requirement of an “equilibration period” stems from the way the FDG radiotracer 

was administered to participants in the original fPET-FDG studies. These studies utilized a 

constant infusion protocol by which an infusion pump administered the radiotracer intravenously 

at a constant rate throughout the entire scan. In contrast to a more traditional bolus injection, the 
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constant infusion paradigm allows researchers to better quantify changes in glucose metabolism. 

When the radiotracer is constantly infused, FDG signal in the brain rises at a predictable and 

constant rate, but only after the initial equilibration period – it takes some time for the signal in 

tissue to “accelerate” to its full rate. 

PET experiments with other radiotracers such as [11C]racolpride have utilized a novel 

injection protocol, known as a bolus plus continuous infusion (B/I) protocol, that is capable of 

shortening the equilibration period at the beginning of a scan (Carson et al., 1993). With the B/I 

method, a partial dose of the radiotracer is administered as an initial bolus injection at the start of 

the scan. The remaining portion of the dose is then constantly infused throughout the remainder 

of the scan.  

Hypothesis 

 In this study, we set out to improve the fPET-FDG method with an optimized tracer 

injection protocol. We believed that a more efficient tracer injection protocol would shorten the 

necessary equilibration period, allowing us to present subjects with their first cognitive task at 

earlier time points in an fPET-FDG scan. From a series of simulations, we predicted that a B/I 

protocol would allow us to detect task-specific changes in FDG signal as early as ten minutes 

after the start of the scan. To account for the B/I protocol, we also proposed an updated 

mathematical model for predicting task-specific signal changes in the analysis of fPET-FDG 

images. 

Methods 

Participants 

 Four participants (4 M, 0 F) between 18 and 65 years of age (M = 29.3, SD = 12.6) 

underwent the scanning procedure outlined below. One participant exited the scanner 10 minutes 
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early because he had to use the bathroom. The other three participants completed the entire 60-

minute scan. Upon successful completion of the study, participants were compensated $125 for 

their time. The study was approved by the Partners Healthcare Institutional Review Board. All 

participants were screened prior to their visit to ensure that they met basic exclusion criteria and 

that it was safe for them to undergo an MR-PET scan. Prior to beginning the study, participants 

gave written informed consent. 

Experimental Procedure 

 Participants were asked to fast for at least four hours before completing the study, so that 

we could take accurate blood-glucose-level measurements. The study was conducted at the 

Antinhola A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital in 

Charlestown, MA, USA.  Just before entering the scanning bay, a blood sample was collected 

from participants to determine baseline blood glucose levels. Throughout the scan, additional 

blood samples were collected by a trained technician at ten-minute intervals.   

During the scan, visual stimuli were projected from behind the scanner onto a small 

mirror mounted on the head-coil. Participants were instructed to direct their gaze at a fixation 

cross on the screen for the duration of the scan. The 60-minute scan was divided into four 15-

minute blocks, each consisting of a 10-minute rest period followed by a 5-minute task period.  

During the rest periods, a small black fixation cross was displayed on a blank white screen. 

During task periods, a black and white checkerboard pattern was flashed on the screen with a 

frequency of 8 Hz (Polimeni, Fischl, Greve, & Wald, 2010). Stimuli were created and presented 

using PsychoPy2 software (Peirce, 2007, 2008). See Figure 2 for a flow chart of the experimental 

procedure. 
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MR/PET Imaging 

 Simultaneous MRI and PET images were acquired on a 3-T TIM MAGNETOM Trio MR 

scanner (Siemen’s Healthcare, Inc.) with an MR-compatible BrainPET insert (Siemens). 

Scanning parameters were identical to those outlined in the previous study by Villien, et al. 

(2014), with the exception that our scan lasted only 60-minutes. MRI acquisition consisted of a 

high-resolution T1-weighted structural scan taken before the injection of FDG, and functional 

imaging throughout the scan. In this paper, we do not discuss the fMRI imaging.  

 FDG in saline was administered in a B/I protocol (Carson et al., 1993). The FDG dose 

was split in half so that 3mCi was injected intravenously in the initial bolus and 3mCi was 

constantly infused intravenously throughout the 60-minute scan. This ratio was chosen after 

conducting computer simulations of various injection protocols (see below). A trained technician 

at the beginning of the scan administered the initial bolus dose manually. A Medrad® Spectra 

Solaris syringe pump was used to administer the subsequent infused dose. PET data were 

reconstructed using an in-house software tool implemented in MATLAB (Natick, MA) (Chonde, 

Izquierdo-Garcia, Chen, Bowen, & Catana, 2014). PET data were binned into 60 one-minute 

frames and reconstructed into 76 slices of dimension 128 x 128 voxels, with an isotropic voxel 

size of 2.5mm3. 

Injection Protocol Simulations 

 To determine the optimal B/I protocol for this study, we conducted several computer 

simulations before scanning. All simulations were conducted with in-house software written by 

the author in MATLAB (Natick, MA). While previous fPET-FDG studies utilized a constant-

infusion protocol (Hahn et al., 2016; Villien et al., 2014), we hypothesized that a B/I protocol 

might allow us to present the visual stimulus earlier in the scan, instead of waiting the standard 
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20 - 30 minute long equilibration period. With a B/I protocol, the experimenter must choose the 

ratio of bolus-administered tracer to infusion-administered tracer. This ratio is summarized by 

the parameter Kbol (Carson et al., 1993). The Kbol for a particular B/I protocol is equal to the 

magnitude of the bolus-administered dose, measured in minutes of infusion. For example, if Kbol 

= 30 minutes, then the dose of the initial bolus is equivalent to the dose that would be infused 

over 30-minutes of scan-time.  

To predict the optimal Kbol for our study, we simulated a whole-brain-averaged time 

activity curve (TAC) for several different values of Kbol (see Figure 3). For the simulations, we 

used a method proposed by Carson, et al. (1993) that requires as input: (1) a Kbol parameter and 

(2) a TAC from a standard bolus injection paradigm. As output, the method produces the 

expected TAC for a B/I protocol.  

The TAC from a standard Bolus injection was simulated using a 2-Tissue Compartment 

Model described by the following system of differential equations (Normandin & Morris, 2008; 

Wernick & Aarsvold, 2004): 

!!!(!)
!"

=  𝑘!𝐶!(𝑡)−  𝑘! + 𝑘! 𝐶!(𝑡)+  𝑘!𝐶!(𝑡)        (1) 

!!!(!)
!"

= 𝑘!𝐶!(𝑡)− 𝑘!𝐶!(𝑡)        (2) 

where 𝐶!(𝑡) is the blood plasma input function, 𝐶! 𝑡  is the intracellular FDG compartment, 

𝐶!(𝑡) is the phosphorylated FDG compartment, and k1 through k4 are the kinetic rate constants 

unique to the tracer. For FDG, we chose rate constants of K1 = 0.1, k2 = 0.2, k3 = 0.11, and k4 = 

0.001 (O’Sullivan et al., 2010; Reivich et al., 1985). k4 was intentionally chosen as a value close 

to zero, because FDG demonstrates irreversible binding properties with limited washout 

(Bertoldo et al., 1998; Reivich et al., 1979; Sokoloff et al., 1977). The plasma input function 
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Cp(t) was generated the following model in Equation 3 (Feng, Huang, & Wang, 1993; 

Normandin & Morris, 2008): 

𝐶! 𝑡 = 𝛽! − 𝛽! − 𝛽! 𝑒!!!! + 𝛽!𝑒!!!! + 𝛽!𝑒!!!!           (3) 

Our implementation of the plasma input function used values 𝛽! =  12nM ∙min!!, 𝛽! =  1.8nM, 

𝛽! =  0.45nM , 𝜅! =  4min!! , 𝜅! =  0.5min!! , and 𝜅! =  0.008min!!  (Feng et al., 1993). 

Using these constants, we generated a 60-minute plasma curve with activity values generated at 

30-second intervals. The plasma curve was then used as input in the 2-TC model. The 2-TC 

model was solved using the ordinary differential equations solver in MATLAB. The resulting 

tissue TAC was used to simulate B/I TACs for various values of Kbol using Equation 4. In 

Appendix 1, we outline how this equation was derived form Carson, et al. (1993). 

𝑇𝐴𝐶!"(𝑡) =  𝑅!"#$%𝑓 𝑡 +  𝑅!"#$%!&"
! ! !"!

!
!

       (4) 

where 𝑅!"#$% =
!!"#

!!"#!!
, 𝑅!"#$%!&" = 1−  𝑅!"#$%, 𝑓 𝑡  is the tissue TAC form a bolus protocol 

generated with the 2TC model, and T is the duration of the scan in minutes. Integrals were 

solved using trapezoidal numerical integration. 

Figure 3 shows the expected average TACs for the whole-brain given different values of 

Kbol. From this simulation, we sought the Kbol that brought the TAC to an approximately linear 

slope most efficiently. We chose a Kbol of 60 minutes because the simulation showed a rapid 

transition to a linear slope, achieving this after just 10 minutes.  

Determining how to split the tracer dose between bolus and infusion when Kbol = 60 min. 

is a simple calculation for a 60-minute scan. With a Kbol = 60 min. for a 60-minute scan, we split 

the 6mCi radiotracer dose in half so that 3mCi was injected during the initial bolus, and the other 

3mCi was constantly infused throughout the scan. 
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fPET Analysis Overview 

 Each subject’s PET data was processed using a registration and analysis pipeline similar 

to those used by Villien, et al. (2014). First, a mean volume of each subject’s dynamic PET 

image was calculated. This mean volume was co-registered to a standard low-resolution T1-

weighted image (62 slices of 50 x 50 voxels with dimension 2.98mm x 3.03mm x 2.96mm) using 

an affine linear transformation (12 degrees of freedom) implemented by the Jip Analysis Toolkit 

(© The General Hospital Corporation). The resulting transformation matrix was then applied to 

the original dynamic PET images to register them to the low-resolution image. Co-registered 

dynamic PET images were then smoothed with a 12mm Gaussian kernel. 

A general linear model (GLM) was fitted to each voxel’s TAC in the smoothed images to 

produce T-statistic maps using the Jip Analysis Toolkit (© The General Hospital Corporation). 

Statistical maps were corrected for multiple comparisons and thresholded using random field 

theory. Statistical maps for each subject were brain-extracted, registered to anatomical space 

using a boundary-based registration, and projected onto a surface of the corresponding 

anatomical images using FreeSurfer software (Fischl, 2012). The resulting activation maps, with 

a threshold of T > 5.0 are displayed in Figure 7. Activation maps were not created for Subject 2 

because he exhibited a high degree of motion (> 5mm) during the scan. 

General Linear Model 

 Like in previous fPET studies, a GLM was fitted to each voxel’s TAC to determine if 

there was a significant change in FDG signal during the task period as compared to the rest 

period (Hahn et al., 2016; Villien et al., 2014).  

𝑌 = 𝛽 ∗ 𝑋 + 𝜀          

𝑇𝐴𝐶 = 𝛽!"#$%&'$ ∗ 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟!"#$%&'$ + 𝛽!"#$ ∗ 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟!"#$ +  𝜀 (5) 
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The GLM included two regressors (see Equation 5). The first was a baseline regressor defined as 

a quadratic fit of the voxel’s TAC. The second regressor was based on the visual stimulus 

paradigm. The model we chose for the task regressor differs from that used in previous fPET-

FDG studies because of our use of the B/I protocol.  

Previous fPET-FDG studies have defined the task regressor as a series of “ramp” 

functions to model the stimulus paradigm. To create the “ramp” functions, we first would create 

an “on-off” time-series vector, where 0 (off) is assigned to time points during the resting periods, 

and a 1 (on) is assigned to time points during the task periods. The “ramps” would then be 

created by taking the integral of the “on-off” vector. The resulting regressor has a shape where 

the slope increases at a constant rate during the task periods, but stays flat during rest periods.  

This model worked for previous studies because a constant infusion injection paradigm 

was used, and all task periods occurred at late time points (after the first 25 minutes). 

Simulations reveal that the linearity of a tissue TAC at late time points in an fPET-FDG scan 

guarantees that for any two identical tasks, increases in FDG signal would be identical. This 

ensures that corresponding “ramps” in a task-regressor for the GLM could also have identical 

slopes. 

Attempts to use this type of regressor in the current study revealed that it did not 

effectively model the data. Simulations suggested that when using a B/I protocol with a task-

period early in the scan, increases in FDG signal were not identical at early and late time points. 

At earlier time-points, the influx of FDG in the plasma compartment is much faster due to the 

combined influence of both the initial bolus input and the constant infusion input. This results in 

a much sharper task-specific increase in FDG signal at early time points compared to task-

specific changes at late time points.  
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An appropriate task regressor for our study needed to account for these variations in task-

specific changes. To generate this regressor, we first simulated the expected tissue TAC for our 

study. Using a 2-TC model with a B/I plasma input function (Kbol = 60 min.), we generated 

TACs for each compartment. To account for changes in glucose metabolism during a task, we 

doubled the value of k3 (the rate constant associated with glucose metabolism) during each of the 

five-minute task periods. To compute the “on-off” vector, we took the derivative of the TAC 

from the metabolized FDG compartment (C2), and set all time-points during the resting-periods 

to zero. The resulting “on-off” vector shows varying degrees of “on” that correspond to the 

varying changes in the slope of the TAC for C2 during task-periods. The final task regressor was 

created by integrating the “on-off” vector. Regressors for various values of Kbol are displayed in 

Figure 8. 

Results 

 We successfully acquired dynamic PET data, blood glucose measures, and venous 

plasma samples from all four participants with the following minor exceptions: Subject 1 ended 

the scan 10 minutes early because he had to use the bathroom. Because of this, we did not 

acquire PET images or blood samples for subject 1 after the 50-minute mark. Additionally, due 

to experimenter error, we were not able to quantify plasma activity levels for subject 3 at the 10-

minute time point. 

 While all four subjects did fall within the height and weight ranges necessary to safely 

undergo an MR-PET scan, body mass index (BMI) calculations indicated that subject 1 (BMI = 

31.5kg/m2) was obese, and that subject 2 (BMI = 25.9kg/m2) and subject 3 (BMI = 28.9kg/m2) 

were overweight. Only subject 4 (BMI = 23.1kg/m2) was of normal weight.  
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Additionally, subject 1 had an abnormally high baseline fasting plasma glucose (FPG) 

level of 102mg/dL.  The next FPG measure form subject 1 at the 30-minute mark returned to 

within the normal range (FPG = 86mg/dL). While the other subjects did not exhibit abnormally 

high baseline FPG measures, subjects 2 and 3 did exhibit FPG levels on the upper-end of the 

normal range, 90 mg/dL and 99 mg/dL respectively. For context, the American Diabetes 

Association classifies normal FPG levels as < 100 mg/dL, and diabetic levels as > 125 mg/dL. 

Patients with FPG levels between 100 – 125 mg/dL, are classified as having impaired glucose 

tolerance and being pre-diabetic. Our study’s protocol allowed participants to complete the study 

as long as they did not have a history of diabetes.  

Kbol Selection 

After simulating the tissue TACs resulting from a range of Kbol values, we chose to fix 

Kbol at 60 min. for this study. Figure 3 shows simulated tissue TACs given values of Kbol ranging 

from 0 to 100 with increments of 20. When Kbol = 0 min., the B/I protocol is actually just a 

constant infusion protocol, since there is no initial bolus. The corresponding tissue TAC is 

therefore identical to the expected tissue TAC from a constant infusion protocol. From this 

simulation, we sought to determine the value of Kbol that would bring the TAC to a linear slope 

most efficiently, thereby minimizing the necessary equilibration period. For all simulated values 

of Kbol > 0 min., the TACs reached a linear slope more quickly than what is expected from a 

constant infusion paradigm. For our study, we chose a Kbol = 60 minutes because the simulation 

showed a rapid transition to a linear slope, achieving this after just 10 minutes. While a higher 

Kbol may have reached a linear slope even faster, any potential improvement seemed marginal. 

Additionally, since we are limited to a fixed amount of radioactivity that can be safely injected 

into human participants, increasing the Kbol would require us to administer less radiotracer during 
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the constant-infusion portion of the study. Since the radiotracer decays throughout the study, it 

was in our best interest to choose the lowest possible effective Kbol, ensuring that an adequate 

amount of radiotracer would be allocated for the constant infusion portion of the B/I protocol. 

 Venous plasma TACs suggest that the simulations were correct and that 60 min. was a 

suitable value for Kbol in this study. Radioactivity in venous plasma was quantified at 10-minute 

intervals during the scan. Normalized measures for each subject, along with an average curve for 

all subjects are plotted in Figure 4. Visual inspection of the average curve shows that after 10 

minutes, a relatively constant value is maintained. This confirms that equilibrium was reached in 

the plasma compartment early in the scan, suggesting that the equilibration period was 

effectively minimized. 

GLM Fit 

 Figure 5 shows the GLM fit for subject 4. The time activity curves shown were extracted 

from two a priori regions of interest (ROIs) of identical shape and size. One ROI was from a 

portion of the frontal lobe, and the other was from a portion in the occipital lobe. ROIs were 

manually generated and TACs were extracted using PMOD (version 3.310, PMOD Technologies 

Ltd., Zürich, Switzerland). The TACs from these ROIs show increased CMRglu in the occipital 

ROI compared to the frontal ROI throughout the entire scan. Additionally, the overall GLM fit 

shows that while changes in occipital TAC slope are quite obvious during the first task-period, 

subsequent task-specific changes in slope are much smaller in magnitude, as was predicted by 

our simulations. Figure 5b. shows the result of subtracting out the baseline quadratic regressor of 

the GLM from the occipital TAC. (For demonstration, we defined the baseline regressor as a 

quadratic fit of the frontal ROI). A fit of the task-regressor to the baseline-subtracted occipital 

data is also quite good, although it is noticeably noisy.  
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fPET-FDG Activations Maps 

 Due to a high degree of motion during the scan (> 5mm), Subject 2 was excluded from 

fPET-FDG activation analysis. Figure 6 shows both the traditional and newly designed task 

regressors used in this analysis, and the associated statistical maps, all for subject 4. In figures 6 

and 7, statistical maps were corrected for multiple comparisons using random field theory and 

thresholded at T > 5.0. The traditional task regressor, used in previous fPET-FDG studies, 

predicts that each task-period will result in identical increases in FDG signal. The newly 

designed task regressor, optimized for the B/I protocol, predicts that earlier task periods would 

result in larger observed increases in FDG signal than later task periods. In line with simulations, 

the use of a GLM with the traditional task regressor did not yield any significant task-associated 

activation clusters in any subjects (see Figure 6a for an example in Subject 4). However, when 

using the newly designed regressor, GLM analysis did yield clusters of activation in Subject 4 

(see Figure 6b). Clusters of activated voxels appeared bilaterally in a region of the subject’s 

occipital lobe that qualitatively aligns with visual area V1 and matches previously reported 

fPET-FDG results (Villien, et al., 2014). 

Figure 7 shows statistical maps of fPET-FDG signal in all subjects. These maps were 

created with a GLM analysis that used the newly designed task regressor. Subjects 1 and 3 did 

not show any significant clusters of activation in these maps. As discussed above, subject 4 

exhibited significant clusters of activation bilaterally in the occipital lobe. 

Discussion 

 We hypothesized that with an improved protocol for the administration of the FDG 

radiotracer, we would be able to detect task-specific changes in FDG signal at earlier time points 

than was previously possible with fPET-FDG. Specifically, we predicted that using a B/I 
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protocol (Kbol = 60 min.) would allow us to detect task-specific changes in FDG signal as early 

as 10-minutes after the start of a scan. Simulations suggested that in order to detect these 

changes, we would require a specialized general linear model, different from that used in 

previous fPET-FDG studies. Our study demonstrated that in subject 4, the detection of these 

task-specific signal changes was possible with a newly designed GLM. In Subjects 1 and 3, we 

were unable to detect these changes. Subject 2 was excluded from the analysis due to significant 

head motion (> 5mm). 

 A closer look at subjects 1 and 3 suggests several confounding variables that may be 

limiting our ability to detect changes in their rate of cerebral glucose metabolism. The baseline 

fasting plasma glucose (FPG) level of subject 1 was above the normal range (FPG = 102 

mg/dL). This subject’s FPG measure likely falls within a typical margin of error for the normal 

range, which is capped at 100 mg/dL. However, a high FPG measure could also indicate that the 

subject ate prior to the scan or that the subject was pre-diabetic. Either of these circumstances 

could result in dynamic changes in glucose metabolism that affect FDG signal. Moreover, 

according to body mass index (BMI) cutoffs set by the Centers for Disease Control and 

Prevention, subject 1 was obese (BMI = 31.5 kg/m2) and subject 3 was overweight (BMI = 28.9 

kg/m2) (Centers for Disease Control and Prevention, 2015).  

Notably, the three participants in the first fPET-FDG study by Villien, et al. were all of 

normal height and weight (N. Zürcher, personal communication, April 7, 2017). Because of this 

there is no way to know whether weight is a confounding variable in the current study. Increased 

body weight of a patient or subject has been associated with increased logistical challenges 

during FDG PET scans (Botkin & Osman, 2007). Previous work also indicates that baseline 

glucose metabolism may differ in overweight and obese populations (Iozzo et al., 2012; Volkow 
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et al., 2009; Wang et al., 2002). Studies have predicted both increased and decreased resting 

baseline glucose metabolism in numerous brain regions. Currently, it is unknown whether 

increased body-weight is associated with dynamic changes in cerebral glucose metabolism, and 

further experimentation is necessary. 

 In subject 4, we successfully detected task-specific changes in glucose metabolism. Like 

the subjects in the first fPET-FDG study, this subject was of normal healthy weight (BMI = 23.1 

kg/m2), and had a normal healthy baseline glucose level (FPG = 77 mg/dL). It is also worth 

noting that subject 4 was recruited to participate in the study because he was a friend of the 

author. Subject 4 was therefore highly motivated to complete the study and to follow instructions 

closely. For example, it is unknown whether subjects 1 and 3 may have fallen asleep in the 

scanner or closed their eyes during the presentation of the flashing checkerboard stimulus. 

 Even in the absence of all confounds, it is possible that the study design itself limited our 

ability to detect task-specific changes in FDG signal. Upon close visual inspection, the activation 

clusters in subject 4 are slightly weaker than the activations reported by Villien (2014). We 

believe that when choosing a tracer administration protocol, there may be an early/late time-point 

trade-off. Although the B/I protocol allows us to detect signal changes at early time points, it 

may also hinder our ability to detect signal changes at later time points. The newly designed 

GLM task-regressor for this study predicts that with a B/I protocol, task-specific changes in FDG 

signal will be greater at early time points than at late time points. Figure 5b shows that in subject 

4, the model’s predictions are correct. We suspect that small changes in FDG signal are 

especially difficult to detect at late time points because as the radiotracer decays throughout the 

scan, statistical noise tends to increase (Teymurazyan, Riauka, Jans, & Robinson, 2013). 
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Figure 8 shows a range of task-regressors for a range of B/I protocols with various values 

of Kbol. As Kbol increases, the early/late time-point trade off that we have described above 

becomes even more pronounced. For instance, when Kbol = 75 min., the predicted FDG signal 

change from the first stimulus is more than four times larger than the predicted FDG signal 

change from an identical stimulus displayed at the end of the scan. On the other end of the 

spectrum, a constant infusion paradigm (Kbol = 0 min.) predicts that all task-associated changes 

in FDG signal will be identical in magnitude; no matter what time the stimulus is displayed. Still, 

because very little radiotracer has accumulated in the brain at early time-points and in a constant 

infusion protocol, it may be difficult to detect task-specific changes at early time points before 

the equilibration period is over. 

If the model presented in Figure 8 is correct, the optimal Kbol for an fPET-FDG study 

may be lower than the Kbol = 60 min. that we had selected for this study. For example, a Kbol in 

the range of 15-30 minutes seems to provide a decent compromise for the proposed early/late 

time-point trade off. Because we have only demonstrated that this model is successful in one 

subject and for one value of Kbol, further validation is needed. Future studies looking to validate 

this model would need to test it in multiple subjects and for a range of Kbol values. 

With the data we have already collected, we may be able to conduct further analyses to 

validate the proposed model. Although subject 2 was excluded for motion, new MRI-based 

motion correction tools may provide us with usable dynamic PET images. This is possible only 

because we collected the data on a simultaneous MR/PET scanner and acquired simultaneous 

fMRI data. Additionally, our research group has an untouched dataset of about a dozen subjects 

who participated in a similar fPET-FDG experiment. While most of these subjects underwent the 
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standard constant infusion protocol, one subject underwent an abbreviated constant infusion 

protocol that a variation of the model could be tested on. 

The existing dataset also contains several subjects who are overweight, but underwent the 

standard constant infusion protocol. fPET-FDG analysis of these subjects’ data could potentially 

lead to some interesting conclusions about whether bodyweight influences dynamic changes in 

glucose metabolism. 

Future analysis of the data from this study could also examine the functional MRI data 

that was acquired concurrently with the fPET-FDG data. Because FDG signal can be used to 

quantify CMRglu, fPET-FDG may offer a quantifiable measure of brain activity that 

complements the more qualitative measures of BOLD fMRI. The manifestation of neuronal 

activity as BOLD signal is not completely understood. It is hypothesized that BOLD signal 

depends on numerous factors including blood flow, oxygen consumption, the characteristics of 

microvasculature, and the MR sequence used to acquire the data (Gagnon et al., 2015; Jueptner 

& Weiller, 1995; Pike, 2012). ASL data acquired during the second half of each scan during our 

study could be used to investigate the influence of CBF on CMRglu. With the simultaneous 

MR/PET modality, it is possible that future fPET-FDG studies could shed some light on the 

origins of BOLD signal, particularly portions of the signal that may be linked to metabolism. 

 For the current study, we have also reconstructed the dynamic PET images into 30-

second and 10-second bins. While this data is likely quite noisy due to decreased counts in each 

bin when compared to the 1-minute reconstruction, the fPET-FDG methodology would benefit 

immensely from an improved temporal resolution for dynamic PET. To push the temporal limits 

of the methodology, future studies might also attempt to shorten the length of a task period or 

rest period. Currently, no fPET-FDG task has been shorter than five minutes in length, and all 
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fPET tasks have been separated by a period of at least five minutes (Hahn, et al., 2016; Villien, et 

al., 2014). 

 Ultimately, we hope that future fPET-FDG studies utilize cognitive tasks that were 

originally designed for fMRI paradigms. For example, an n-back working memory task could be 

used to investigate dynamic changes in glucose metabolism associated with working memory. 

Previous work has established a link between decreased resting CMRglu and decreased working 

memory capacity in Alzheimer’s Disease (Kalpouzos et al., 2005). However, it is currently 

unknown what normal dynamic changes in glucose metabolism might exist in healthy subjects 

completing a working memory task. Numerous improvements need to be made to the fPET-FDG 

methodology before we can be sure that it is capable of detecting the miniscule changes in 

glucose metabolism that are likely associated with a working memory task. Still, the potential for 

this line of research exists. 

 In the future, fPET-FDG may also be of use to researchers and clinicians interested in 

performing functional brain imaging on patients with metallic implants. While metallic implants 

for deep brain stimulation are becoming MR-compatible with greater frequency (Zrinzo et al., 

2011), something as simple as an aneurysm clip can still exclude participants from MRI 

experiments. Because it does not require a large magnetic field, future fPET-FDG may someday 

be a safe alternative to fMRI for patients with metallic implants. 

The fPET-FDG method may also be of interest to clinicians interested in diseases like 

diabetes which involve poor control of glucose metabolism. Research has shown increased 

incidence of cognitive deficits in patients with poor metabolic control, such as those with 

diabetes (Baker et al., 2011; Ryan et al., 2006). A simultaneous fMRI/fPET-FDG study might 

present diabetic patients with a set of cognitive tasks and a sports drink used as a glucose 
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challenge. Results from a study like this might map the brain areas associated with these 

patients’ cognitive deficits, and then see how those regions correlate with areas exhibiting poor 

metabolic control during the glucose challenge.  

 While many of the applications for fPET-FDG might seem highly imaginative and out of 

reach, the current study probably would have sounded just as crazy to some of the first PET 

researchers. The ability to measure functional changes in glucose metabolism with fPET-FDG 

has opened up a whole new field of possibilities for neuroimaging researchers. With further work 

and steady methodological improvement, the fPET-FDG methodology has the potential to 

enhance our understanding brain function. With fPET-FDG added to their toolkit, neuroscientists 

and psychologists can develop novel explanations for how the brain and mind work.  
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Table 1 Subject Information 

Subject Recruitment Sex Age BMI 
(kg/m2) 

Baseline Plasma 
Glucose (mg/dL) 

30 min. Plasma 
Glucose (mg/dL) 

60 min. Plasma 
Glucose (mg/dL) 

1 Online Ad Male 48 31.5 102 86 N/A 
2 Online Ad Male 23 25.9 90 N/A N/A 
3 Online Ad Male 25 28.9 99 68 94 
4 Friend Male 21 23.1 77 78 78 
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Figure 1 Two-Tissue Compartment Model for FDG 

 

Figure 1. The overall observed signal in FDG-PET is composed of several separate signals. (A) 

This portion of the figure was adapted from Kelloff et al. (2005). The FDG radiotracer is 

processed by the body similarly to how glucose is processed. When FDG signal is detected by 
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the PET scanner, it could have originated from FDG in blood plasma, from FDG that has entered 

the cell through a Glut-1 transport protein, or from phosphorylated FDG that has begun to 

undergo the cellular metabolic process of glycolysis. (B) Mathematically, we can predict how 

much each of these states contributes to the overall FDG signal using a two-tissue compartment 

(2-TC) model. The compartments Cp, C1, and C2 correspond to the amount of FDG that exists in 

blood plasma, the amount of FDG that has entered the cell, and the amount of FDG that has been 

phosphorylated, respectively. The parameters K1, k2, k3, and k4 are rate constants that describe 

the rate of exchange between compartments. Notably, k4 is traditionally set to zero or close to 

zero because very little FDG is ever de-phosphorylated by the enzyme Glucose-6-Phosphotase in 

the brain. This is represented in the model by a dashed line. (C) The entire 2-TC model can be 

summarized by a system of differential equations. By providing a plasma input function, Cp(t), 

and values for the rate constants, K1 – k4, the system of differential equations can be solved. (D) 

Solving this system allows us to track the changing concentrations of FDG in each compartment 

over time. Here, the red line is a simulated plasma input function for a bolus injection of FDG. 

The blue line represents the changing concentration of FDG in the cell as a result of the plasma 

input, the black line represents the changing concentration of phosphorylated FDG, and the 

purple line is an estimate of the overall observed FDG signal. 
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Figure 2 Outline of Experimental Procedure 

 

Figure 2. Participants were scanned using a simultaneous MR/PET scanner for 60 minutes.  In 

the scanner, they alternated viewing a fixation cross on a blank screen (rest period) and a circular 

flashing checkerboard pattern (task period). Participants received a bolus injection at the start of 

the scan followed by constant infusion of 2-[18F]-fluorodeoxyglucose (FDG) throughout the 

entire scan. Dynamic PET images were acquired throughout the entire scan.  Simultaneous MRI 

was acquired as well: BOLD acquisition for the first 30 minutes and arterial spin labeling (ASL) 

acquisition for the last 30 minutes. 
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Figure 3 Simulated Tissue Time Activity Curves for Various Values of Kbol 

 

Figure 3. Kbol is a parameter that summarizes how the dose of a radiotracer is divided between 

the initial bolus and subsequent constant infusion in a bolus plus continuous infusion (B/I) 

protocol. If Kbol = 30 min., then the bolus portion of the B/I administration is equal in volume to 

the amount of radiotracer that was constantly infused over 30 minutes. Simulated tissue time 

activity curves (TAC) are plotted above for various values of Kbol. As Kbol is increased, a larger 

portion of the radiotracer dose is injected in the initial bolus, resulting in an overall increase in 

PET signal. When the radiotracer is constantly infused (Kbol = 0 min.), it takes about 20-30 

minutes before the tissue curve reaches a linear slope (red line).  As Kbol increases, the tissue 

TAC reaches a linear slope more quickly. From these simulations, we decided to set Kbol = 60 

min. for the B/I protocol of FDG in this study. 
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Figure 4 Time Activity Curves for Venous Blood Plasma 

 

Figure 4. Radioactivity in venous plasma was quantified at 10-minute intervals during the scan. 

Normalized measures for each subject (black circles), along with an interpolated average curve 

for all subjects (blue line) are presented here. After 10 minutes, a relatively constant value is 

maintained, confirming that equilibrium was reached in the blood plasma early in the scan. 
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Figure 5 GLM Fit for Subject 4 

 

Figure 5. (A) Subjects in the experiment underwent a 60-minute scan with alternating 10-minute 

rest periods and 5-minute task periods. During rest periods, subjects viewed a blank white screen 

with a black fixation cross. During task periods, subjects viewed a flashing circular checkerboard 

pattern. (B) fPET-FDG signal from manually-drawn regions of interest in the occipital lobe (red) 

and frontal lobe (blue) are shown. A general linear model (GLM) (black line) was fitted to the 
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data from the occipital ROI. (C) After subtracting the baseline term of the GLM, the resulting 

FDG signal is shown here (red), along with the corresponding task regressor (black line). The 

task regressor models increases in the slope of the overall FDG signal that are due solely to the 

presentation of the visual stimulus. Data presented in parts B and C of this figure was taken from 

subject 4. 
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Figure 6 Comparison of Traditional and New General Linear Models in Subject 4 

 

Figure 6. Dynamic PET images from all subjects were analyzed using two general linear models 

(GLMs). The task regressors from each model predict changes in FDG signal due to the 

presentation of a flashing checkerboard stimulus at four different times throughout a 60-minute 

scan. Two possible task-regressors and the resulting statistical maps (T > 5.0) are shown for 

Subject 4. (A) The traditional task regressor predicts that increases in FDG signal would be 

identical no matter when the stimulus was viewed. A GLM using this regressor does not model 

the FDG signal in any voxel significantly better than any other voxel, and no activation clusters 

are observed. (B) A new task regressor predicts that because a bolus plus continuous infusion 

protocol was used in this study, stimulus-associated increases in FDG signal at the beginning of 

the scan would be greater than those occurring at later time points. A GLM that uses the new 

regressor models changes in FDG signal in the subject’s occipital lobes significantly better than 

all other areas of the brain (T > 5.0).  
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Figure 7 fPET-FDG Activation Maps 

 

Figure 7. Statistical maps (T > 5.0) for subjects 1, 3, and 4 highlight brain regions that show 

increased FDG signal changes during the display of a flashing circular checkerboard pattern. 

Subject 2 was excluded from this analysis because he exhibited significant head motion during 

the scan (> 5mm). Subjects 1 and 3 do not show any significant regions of activation. Subject 4 

shows bilateral activation in area V1 of the occipital lobe. 
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Figure 8. Task Regressors for Various Kbol Values 

 

Figure 8. Task regressors predict the magnitude of task-associated changes in FDG signal over a 

60-minute scan. Four simulated task-periods are shaded in gray. For a constant infusion protocol 

(Kbol = 0 min.), the regressor predicts that all task-associated changes in FDG signal will be of 

equal magnitude, no matter when the tasks occur during the scan. For bolus plus continuous 

infusion protocols with higher values of Kbol, the corresponding task regressors predict that 

earlier task-periods will result in greater FDG signal changes than later task-periods. 
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Appendix 

Here, we derive our equation for generating a simulated bolus plus continuous infusion 
protocol from the method proposed by Carson, et al. (1993). Carson, et al. present the following 
method for deriving the equivalent bolus infusion protocol 𝐻(𝑡) from a bolus previously known 
bolus protocol 𝑓(𝑡): 

 
 

𝐻 𝑡 =  
𝐾!"#𝛿 𝑡 +  𝜃 𝑡 − 𝜃 𝑡 − 𝑇

𝐾!"# + 𝑇
 where  θ t = 0, 𝑡 < 0

1, 𝑡 > 0 

𝑇 =  the duration of the scan and 𝛿 𝑡  is the Dirac delta function  

 

𝑔 𝑡 =  𝐻 𝑡 ⨂𝑓 𝑡  

=  
𝐾!"#  𝑓 𝑡 +  𝑓 𝜏 𝑑𝜏!

!
𝐾!"# + 𝑇

 

=  
𝐾!"#  𝑓 𝑡  
𝐾!"# + 𝑇

+  
𝑇 𝑓 𝜏 𝑑𝜏!

!
𝑇 𝐾!"# + 𝑇

 

 =
𝐾!"#  𝑓 𝑡  
𝐾!"# + 𝑇

+
𝐾!"# − 𝐾!"# + 𝑇  𝑓 𝜏 𝑑𝜏!

!
𝑇 𝐾!"# + 𝑇

 

=
𝐾!"#  𝑓 𝑡  
𝐾!"# + 𝑇

+
𝐾!"# + 𝑇
𝐾!"# + 𝑇

−
𝐾!"# 𝑓 𝜏 𝑑𝜏!

!
𝑇 𝐾!"# + 𝑇

  

= 𝑅!"#  𝑓 𝑡 +  1− 𝑅!"#  
𝜏 𝑑𝜏!

!
𝑇  where 𝑅!"# =

𝐾!"#
𝐾!"# + 𝑇

 

  = 𝑅!"#  𝑓 𝑡 +  𝑅!"#
𝑓 𝜏 𝑑𝜏!

!
𝑇  where 𝑅!"# = 1− 𝑅!"#    

 

Therefore, we can use the equation 𝑔 𝑡 =  𝑅!"#  𝑓 𝑡 +  𝑅!"#
! ! !"!

!
!

 to map a known bolus 
curve f(t) to an equivalent bolus plus continuous infusion curve g(t), give the ration of bolus to 
infusion 𝑅!"# =

!!"#
!!"#!!

. 


