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BACKGROUND. Patients with schizophrenia (SCZ) experience chronic cognitive deficits.
Histone deacetylases (HDACs) are enzymes that regulate cognitive circuitry; however, the
role of HDACs in cognitive disorders, including SCZ, remains unknown in humans. We
previously determined that HDAC2 mRNA levels were lower in dorsolateral prefrontal
cortex (DLPFC) tissue from donors with SCZ compared with controls. Here we investigated
the relationship between in vivo HDAC expression and cognitive impairment in patients
with SCZ and matched healthy controls using [11C]Martinostat positron emission
tomography (PET).

METHODS. In a case-control study, relative [
11

C]Martinostat uptake was compared between
14 patients with SCZ or schizoaffective disorder (SCZ/SAD) and 17 controls using
hypothesis-driven region-of-interest analysis and unbiased whole brain voxel-wise
approaches. Clinical measures, including the MATRICS consensus cognitive battery, were
administered.

RESULTS. Relative HDAC expression was lower in the DLPFC of patients with SCZ/SAD
compared with controls, and HDAC expression positively correlated with cognitive
performance scores across groups. Patients with SCZ/SAD also showed lower relative
HDAC expression in the dorsomedial prefrontal cortex and orbitofrontal gyrus, and higher
relative HDAC expression in the cerebral white matter, pons, and cerebellum compared
with controls.

CONCLUSIONS. These findings provide in vivo evidence […]
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Introduction
Epigenetic mechanisms have been associated with cognitive func-
tion through postmortem human and preclinical studies (1–3), but 
no direct associations have been made in the living human brain. 
This is because until recently (4), epigenetic neuroimaging tools 
did not exist. The epigenetic enzymes that control gene transcrip-
tion could cause or respond to cell pathology, potentially leading 
to cognitive deficits in human diseases as diverse as schizophrenia 

(SCZ) and Alzheimer’s disease. Using neuroimaging tools designed 
to measure the distribution of epigenetic enzymes, we can now 
begin to explore the relationships among the amount and location 
of enzymes, brain anatomy and function, and disease phenotypes. 
Of the epigenetic enzymes that can regulate gene transcription and 
influence behavior, histone deacetylases (HDACs) have emerged as 
potential targets for therapeutic interventions (5–8). In the healthy 
brain normal HDAC activity is critical for maintenance of neural 
cell identity, survival, and the activity-dependent regulation of 
neuroplasticity (2, 9–11). Using [11C]Martinostat (12–14), an HDAC 
radiotracer, and positron emission tomography (PET), we previous-
ly mapped HDAC expression in healthy individuals (4). Here we 
measure relative in vivo HDAC expression in the brain of patients 
with SCZ compared with healthy controls.

Preclinical studies link HDACs to cognitive circuitry. Abnor-
mal amounts of HDACs disrupt cognition in rodents, evidenced 
through both molecular and behavioral phenotypes. For exam-
ple, overexpression of HDAC2 in the mouse hippocampus 
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The severity of cognitive deficits strongly impacts functional out-
comes including quality of life (45, 46). Thus, amelioration of this 
highly debilitating form of cognitive impairment represents an 
important unmet need for SCZ treatment (46).

We find that patients with SCZ/schizoaffective disorder (SAD) 
show differential [11C]Martinostat brain uptake patterns compared 
with healthy controls, and regional [11C]Martinostat brain uptake 
correlates with cognitive performance scores.

Results
Study participants. Written informed consent was received from 
participants prior to inclusion in the study (n = 22 subjects per 
group were enrolled). Eligible subjects with SCZ or SAD (n = 14, 
ages 22–65 years) were group matched to eligible healthy con-
trol subjects (n = 17, ages 23–65 years) on the basis of age, sex, 
smoking status (47), and parental socioeconomic status (Figure 1  
and Table 1). Subjects with SCZ/SAD represented a chronic, 
medicated cohort with moderate symptom severity as deter-
mined by the Positive and Negative Syndrome Scale (PANSS) 
interview (48) (Table 2). As expected, subjects with SCZ/SAD 
demonstrated cognitive deficits and scored significantly lower 
than controls on multiple domains of the NIMH Measurement 
and Treatment Research to Improve Cognition in Schizophre-
nia (MATRICS) consensus cognitive battery (MCCB) (49–51) 
(unpaired t test, P < 0.05) (Table 1).

Hypothesis-driven a priori analysis of [11C]Martinostat uptake in 
subjects with SCZ/SAD compared with controls. [11C]Martinostat is 
a radiotracer selective for HDAC paralogs 1, 2, 3, and putatively 6 
(4, 12–14). [11C]Martinostat PET was performed to assess relative 
in vivo HDAC expression, with standard uptake value (SUV) nor-
malized to whole brain mean (SUVR) used as the primary outcome 
measure. We previously determined that HDAC2 mRNA levels 
were significantly lower in postmortem DLPFC tissue from donors 
with SCZ compared with controls (37). Therefore, we selected the 
DLPFC for a priori region-of-interest (ROI) analysis in the present 
imaging study (Figure 2A). In accordance with our previous post-
mortem data (unpaired t test, P < 0.0001), [11C]Martinostat SUVR 
in the DLPFC was significantly lower in subjects with SCZ/SAD 
compared with controls (unpaired t test, P = 0.0017) (Figure 2, B 
and C). Correlations between SUVR in the DLPFC and cognitive 
performance scores were assessed. SUVR was positively associat-
ed with overall composite (Spearman’s r = 0.36, P = 0.048), speed 

decreased synaptic protein density, impaired long-term potenti-
ation, and negatively regulated memory formation, while Hdac2 
deletion had opposing effects (15). Analogously, Hdac2 deletion 
in postmitotic forebrain neurons enhanced working memory 
and extinction learning (16). Furthermore, genetic mutation or 
knockdown of Hdac2 in the central nervous system improved 
spatial, associative, and threat recognition memory in mouse 
models of Pitt-Hopkins syndrome (Tcf4+/–) (17) and Alzhei-
mer’s disease (CK-p25) (18, 19). Encouragingly, small molecule 
HDAC inhibitors conferred cognitive benefits in rodent models 
of aging (20, 21), neurodegeneration (6, 21–26), and neuropsy-
chiatric (27–34) disease. Taken together with observations of 
aberrant HDAC levels in postmortem human brain tissue from 
donors with Alzheimer’s disease (18, 19, 35), SCZ (29, 36–40), 
depression (28, 37), and bipolar disorder (39), these findings 
suggest that HDAC-related mechanisms may play a fundamen-
tal role in human cognition.

The dorsolateral prefrontal cortex (DLPFC) is a brain region 
highly important in human cognition that contributes to executive 
functioning, including working memory, planning, and mental 
flexibility (41–44). Previously, we observed that HDAC2 mRNA 
levels were 32% lower in the DLPFC of donors with SCZ (n = 175) 
compared with controls (n = 210), with no difference in HDAC1 
mRNA levels (37). The HDAC2 deficit was unique to donors with 
SCZ among the psychiatric disorders tested, including bipolar dis-
order (n = 61) and major depressive disorder (n = 135) (37). Based 
on these data we hypothesized that regional [11C]Martinostat 
uptake would be lower in the DLPFC of patients with SCZ. Howev-
er, other groups observed higher HDAC1 mRNA levels in the pre-
frontal cortex (n = 16–27 per group) (36, 38), as well as in GABAer-
gic hippocampal neurons (n = 7 per group) (39) from donors with 
SCZ compared with controls. As studies using postmortem tissue 
are limited by both physiological differences and spatial sampling 
constraints, this underscores the potential utility of [11C]Martinos-
tat PET for measuring in vivo HDAC expression across the whole 
brain in patients with SCZ.

Moreover, SCZ represents an example of a chronic cognitive 
disorder, as more than 75% of patients show a wide range of cogni-
tive deficits, with mean effect sizes one standard deviation below 
population means (45). Cognitive impairment manifests early 
during the course of SCZ and typically persists, in part because 
current antipsychotic regimens do not affect cognition (45, 46). 

Figure 1. Study design. Subjects with SCZ/SAD were group matched 
to healthy controls based on age, sex, smoking status, and parental 
socioeconomic status (SES). Injected dose and specific activity of [11C]
Martinostat did not differ between groups. All subjects underwent a [11C]
Martinostat PET scan and cognitive testing with the MCCB. Subjects with 
SCZ/SAD received the PANSS interview to measure symptom severity.
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P = 0.0083), and verbal learning (Spear-
man’s r = –0.57, P = 0.036) MATRICS 
domains (Supplemental Figure 1C). Oth-
er MATRICS domains and PANSS scores 
did not show significant relationships with 
SUVR in the cerebral white matter or cere-
bellum cortex (Spearman’s correlation anal-
ysis, P > 0.05) in subjects with SCZ/SAD.

Investigation of cortical thinning and 
antipsychotic medication usage. Cortical 
thickness was measured within the DLPFC 
(Figure 2A, blue) and within frontal cortex 
regions as detected by voxel-wise analysis 
(Figure 3A, blue). No significant differenc-
es between subjects with SCZ/SAD and 
controls were found (unpaired t test, P > 
0.05) (Supplemental Figure 2A), demon-
strating that cortical thinning did not drive 
[11C]Martinostat uptake alterations in these 
regions. SUVR in the DLPFC (Figure 2A, 
blue) and SUVR in regions detected by vox-
el-wise analysis (Figure 3A, blue or red) did 
not correlate with chlorpromazine (CPZ) 

equivalent dose (52), a metric of antipsychotic drug exposure, 
in subjects with SCZ/SAD (Spearman’s correlation analysis, P > 
0.05) (Supplemental Figure 2B). These data suggest that antipsy-
chotic medication usage did not drive [11C]Martinostat uptake 
alterations in these regions. As antipsychotic drug exposure was 
shown to increase HDAC2 protein expression in the frontal cor-
tex (29, 53, 54) of rodents, [11C]Martinostat uptake differences 
may be more pronounced when comparing controls with medi-
cation-free subjects with SCZ/SAD.

Discussion
Dysfunction of the DLPFC has been consistently associated with 
executive function deficits in SCZ (42–44). We previously discov-
ered that HDAC2 mRNA levels were lower in postmortem DLP-
FC tissue from donors with SCZ compared with control donors 
(37). This result was the basis of our hypothesis that regional [11C]
Martinostat uptake would be lower in the DLPFC of patients with 
SCZ. Through a priori region-of-interest analysis, we found that 
SUVR in the DLPFC was indeed lower in subjects with SCZ/SAD 
compared with healthy controls. Using unbiased whole brain vox-
el-wise analysis, we identified additional regions of the frontal 
cortex that showed lower SUVR in subjects with SCZ/SAD com-
pared with controls, including the dorsomedial prefrontal cortex 
and the orbitofrontal gyrus, which have been associated with SCZ 
pathology (55). We further found that the cerebral white matter, 
fusiform gyrus, pons, and cerebellar regions important for cogni-
tive processes (56–58) showed higher SUVR in subjects with SCZ/
SAD compared with controls. Subregions of the cerebral white 
matter and cerebellum cortex displayed the strongest statistical 
differences between groups, suggesting that HDACs may play a 
particularly important role in these brain regions. Together these 
results suggest an HDAC imbalance in the brain of patients with 
SCZ. However, as our study measures changes in [11C]Martinostat 
uptake relative to the whole brain mean (SUVR), and not absolute 

of processing (Spearman’s r = 0.38, P = 0.036), and social cogni-
tion (Spearman’s r = 0.53, P = 0.0023) MATRICS domains across 
groups (Figure 2D). Other MATRICS domains and PANSS scores 
did not show significant relationships with SUVR in the DLPFC 
(Spearman’s correlation analysis, P > 0.05).

Unbiased whole brain voxel-wise analysis of [11C]Martinostat 
uptake in subjects with SCZ/SAD compared with controls. Explor-
atory voxel-wise analysis was performed to further localize the 
DLPFC effect, as well as to evaluate relative [11C]Martinos-
tat uptake differences between groups across the whole brain 
(unpaired t test, Z > 2.3, Pcluster < 0.05). SUVR was significant-
ly lower in multiple regions of the frontal cortex, including 
the DLPFC (specifically the rostral middle frontal gyrus and 
a portion of the superior frontal gyrus), dorsomedial prefron-
tal cortex, and orbitofrontal gyrus of subjects with SCZ/SAD 
compared with controls (Figure 3 and Table 3). SUVR was sig-
nificantly higher in the cerebral white matter, fusiform gyrus, 
cerebellum, and pons of subjects with SCZ/SAD compared with 
controls (Figure 3 and Table 3). At an even stricter statistical 
threshold (unpaired t test, n = 10,000 permutations, family-
wise error rate–corrected P [PFWE] < 0.05), SUVR was signifi-
cantly higher in the cerebral white matter and cerebellum of 
subjects with SCZ/SAD compared with controls (Supplemen-
tal Figure 1, A and B; supplemental material available online 
with this article; https://doi.org/10.1172/JCI123743DS1). To 
investigate the potential impact of HDAC expression in these 
regions, preliminary correlations between SUVR in the cere-
bral white matter or cerebellum cortex (anatomical ROIs) and 
cognitive performance scores were assessed in subjects with 
SCZ/SAD. In the cerebral white matter, but not the cerebellum 
cortex, SUVR was negatively associated with overall composite 
(Spearman’s r = –0.64, P = 0.015), speed of processing (Spear-
man’s r = –0.86, P = 0.0002), attention vigilance (Spearman’s  
r = –0.75, P = 0.0027), working memory (Spearman’s r = –0.69,  

Table 1. Demographic characteristics of study participants

Demographics Controls (n = 17) SCZ/SAD (n = 14) P value
Age (yr) 47.3 ± 13.1 46.3 ± 13.7 0.837
Sex (F:M) 8:9 6:8 N/A
Current tobacco smoker (Y:N) 1:16 1:13 N/A
Parental socioeconomic index 3.00 ± 1.06 2.62 ± 1.45 0.428
Injected dose (mCi) 5.08 ± 0.329 5.04 ± 0.278 0.706
Molar activity (mCi/nmol) 2.10 ± 0.817 2.24 ± 1.39 0.748
MCCB processing T-score 52.2 ± 11.8 41.0 ± 16.9 0.0480A

MCCB attention T-score 48.8 ± 11.0 43.1 ± 16.6 0.283
MCCB working memory T-score 47.9 ± 11.3 37.5 ± 11.5 0.0176A

MCCB verbal learning T-score 49.4 ± 5.34 40.1 ± 15.3 0.0448A

MCCB visual learning T-score 58.3 ± 10.3 45.5 ± 16.5 0.0197A

MCCB reasoning T-score 47.1 ± 10.6 46.2 ± 11.1 0.819
MCCB social cognition T-score 45.2 ± 11.3 40.6 ± 20.3 0.452
MCCB overall T-score 49.5 ± 12.0 36.9 ± 19.7 0.0493A

Subjects with SCZ/SAD (n = 14) and healthy control subjects (n = 17) were group matched based on 
age, sex, smoking status, and parental socioeconomic status. Injected dose and specific activity of 
[11C]Martinostat did not differ between groups. The MCCB was administered to all subjects. P values 
were determined by unpaired t tests. ASignificant P values. Non-ratio values represent mean ± SD.
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pressive effects in the rodent model of depression (28). Future 
longitudinal PET studies comparing [11C]Martinostat uptake 
with cognitive phenotypes throughout the course of SCZ (59) 
may help reconcile these hypotheses.

A major challenge presented by imaging and postmortem 
studies is their mechanistic interpretations. For example, what 
does a decrease in HDAC in the frontal cortex mean in a brain 
circuit–based context? To probe the downstream molecular con-
sequences of decreased [11C]Martinostat signal, we previously 
used pharmacologic doses of Martinostat to inhibit HDAC enzyme 
activity in human neural precursor cells (4). We assayed mRNA lev-
els of genes known to be regulated by HDAC (18) and critical for 
synaptic plasticity (60, 61) such as early growth response 1 (EGR1), 
brain-derived neurotrophic factor (BDNF), and synaptophysin 
(SYP). Notably, EGR1 is also associated with SCZ risk (62), and 
decreased EGR1 expression has been observed in DLPFC tissue 
from donors with SCZ (n = 35–62) (62, 63). Martinostat treatment 
increased EGR1, BDNF, and SYP gene expression (4). These data 
could indicate a relationship between HDAC amount and human 
cognitive circuitry, and may support the potential utility of HDAC 
inhibitors as therapeutics for SCZ. However, future studies using 
neurons derived from patients with SCZ and genetic modulation of 
HDAC expression are required to strengthen this hypothesis (64, 

amounts of [11C]Martinostat uptake (distribution volume, VT), 
future human postmortem studies and [11C]Martinostat PET stud-
ies with arterial blood sampling are required to validate HDAC 
expression differences in these newly identified regions. Our con-
sistent findings in the DLPFC by both imaging and postmortem 
analyses indicate that these key next steps are warranted.

Subjects with SCZ/SAD exhibited cognitive deficits, includ-
ing in executive functions, and cognitive performance scores 
positively correlated with SUVR in the DLPFC across groups. 
Preliminary findings also showed that in subjects with SCZ/SAD, 
cognitive performance scores negatively correlated with SUVR 
in the cerebral white matter. These data may suggest that abnor-
mal HDAC expression, in either direction, could have negative 
effects on cognition. Alternatively, preclinical evidence suggests 
that HDAC deficiency may be beneficial in cognitive disorders 
by restoring neuronal function and promoting synaptic plastici-
ty. A multitude of studies found that HDAC inhibitor treatment 
enhanced cognitive performance in rodents (6, 15, 20–25, 27–32). 
Of particular relevance, Covington et al. (28) discovered lower 
HDAC2 expression in nucleus accumbens tissue from donors 
with depression compared with control donors, and in a rodent 
model of depression compared with WT animals. Despite this 
HDAC2 deficiency, HDAC inhibitor treatment produced antide-

Figure 2. [11C]Martinostat SUVR in the DLPFC is 
lower in subjects with SCZ/SAD compared with 
healthy matched controls and correlates with 
cognitive performance scores across groups. 
(A) ROI mask (left, blue) for the DLPFC and SUVR 
mean images for n = 17 controls and n = 14 sub-
jects with SCZ/SAD at MNI coordinate x = –42.  
(B) Box plot (median, minimum/maximum) 
depicts SUVR extracted from the DLPFC a priori 
ROI. **P = 0.0017, determined by an unpaired t 
test. CTRL, control. (C) Data adapted from Schro-
eder et al. (37). Box plot (median, minimum/
maximum) depicts HDAC2 mRNA expression 
normalized to a geometric mean (β-2-Microglob-
ulin, β-Glucuronidase, and β-Actin) in postmor-
tem DLPFC tissue from n = 210 control donors 
and n = 175 donors with SCZ. ****P < 0.0001, 
determined by an unpaired t test. (D) MCCB 
T-scores from n = 17 controls (white circles) and 
n = 14 subjects with SCZ/SAD (gray circles) were 
compared with SUVR extracted from the DLPFC 
with Spearman’s correlation analysis.
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was classified as a non-smoker. At the level of individual pairs, age did 
not differ by more than 5 years. Diagnosis of SCZ or SAD was confirmed 
by licensed physician evaluation with the Structured Clinical Interview 
for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition 
(SCID-I/P) (67) or psychiatrist consensus. To verify that control sub-
jects did not have a psychiatric disorder, the Structured Clinical Inter-
view for DSM-IV-TR Axis I Disorders, Research Version, Non-Patient 
Edition (SCID-I/NP) (68) was administered. Subjects were physically 
healthy as determined by medical history and a physical examination. 
Subjects had no history of major physical illness (including diabetes 
mellitus), impaired elimination, major surgery within the past year, or 
present substance abuse (other than nicotine). Subjects met a multi-
point safety checklist for both MR and PET procedures. Subjects who 
were pregnant or breastfeeding, had ferromagnetic foreign bodies, had 
a history of major head trauma, or failed the urine drug screen were 
excluded. Controls with a current/previous psychiatric disorder or his-
tory of SCZ, schizophreniform disorder, or schizoaffective disorder in a 
first-degree relative were excluded. Controls taking psychotropic med-
ications or hormone treatments were excluded.

Clinical assessments and rating scales. Subjects underwent the 
MATRICS consensus cognitive battery (MCCB) (49–51) to measure 
cognitive function. Subjects with SCZ/SAD were administered the 
PANSS interview (48) to measure symptom severity. Our staff was 
certified by the MGH Schizophrenia Clinical & Research Program to 
perform both assessments. The Hollingshead index (69) was used to 
determine parental socioeconomic status. CPZ equivalents were cal-
culated (52) for subjects with SCZ/SAD. One subject was not regularly 
taking antipsychotics and was not included in the calculation.

Radiosynthesis of [11C]Martinostat. [11C]Martinostat was synthe-
sized as previously described (4).

MR-PET data acquisition and reconstruction. An intravenous cathe-
ter was placed in the antecubital vein of the arm, and ~5 mCi [11C]Mar-
tinostat (5.08 ± 0.33 mCi for control subjects; n = 17) and (5.04 ± 0.28 
mCi for subjects with SCZ/SAD; n = 14) was injected as a manual bolus 
over a period of less than 1 minute by a licensed nuclear medicine 
technologist. Participants were instructed to remain still for the entire 
duration of the 90-minute scan. MR and PET images were acquired on 
a 3T Siemens TIM Trio with a BrainPET insert using an 8-channel head 
coil (70). An anatomical T1-weighted multi-echo MPRAGE sequence 
(MEMPRAGE) with echo-planar imaging (EPI) navigator that allows 
prospective motion correction (71, 72) (repetition time [TR], 2530 ms; 
echo time 1 [TE1], 1.66 ms; TE2, 3.53 ms; TE3, 5.40 ms; TE4, 7.27 ms; 
inversion time [TI], 1100 ms; flip angle, 7°; and isotropic resolution, 
1 mm) was acquired. To account for motion between MEMPRAGE 
acquisition and the PET frame of interest, the MEMPRAGE was 
realigned to a single reference PET frame 60–90 minutes after radio-
tracer injection. MR-based attenuation correction was applied using a 
statistical parametric mapping (SPM), pseudo–computed tomography 
method (73). PET data were binned into six 5-minute frames spanning 
60–90 minutes after radiotracer injection and reconstructed using the 
three-dimensional ordinary Poisson ordered-subset expectation max-
imization (3D OP-OSEM) algorithm with detector efficiency, decay, 
dead time, attenuation, and scatter corrections applied (74, 75). The 
final PET images were reconstructed into 153 slices with 256 × 256 pix-
els and a 1.25-mm isotropic voxel size in the units of SUV. The final MR 
images were reconstructed with FreeSurfer version 6.0 (http://surfer.
nmr.mgh.harvard.edu/) (76).

65). In particular, using induced pluripotent stem cell–derived neu-
ronal models from patients imaged with [11C]Martinostat would 
allow for a unique and powerful interplay between in vivo obser-
vations and ex vivo mechanistic insights within the same genetic 
landscape (66).

In conclusion, our study presents in vivo evidence of human 
neuroepigenetic dysregulation in SCZ and provides the founda-
tion for using [11C]Martinostat PET to study the role of HDACs in 
human cognition.

Methods
Study design. Our main research objective was to compare relative [11C]
Martinostat brain uptake between subjects with SCZ/SAD and group-
matched healthy controls using magnetic resonance–PET (MR-PET). 
SUV collected 60–90 minutes after radiotracer injection, normalized 
to whole brain mean (SUVR), was the primary endpoint assessed. 
Data from 2 subjects were excluded: a subject with SCZ exited the 
scanner before the 60- to 90-minute time point, and a control subject 
was found to use psychotropic medications. Imaging studies were not 
blinded, and no outliers were excluded.

Participants. All participants provided written informed consent. 
Participants underwent a physical examination with a licensed physi-
cian or nurse practitioner. Medical history, smoking status, and medi-
cation use were recorded. Illicit drug use was assessed by a urine drug 
screen (Discover Drug Test Card DIS-DOA-3124, American Screening 
Corp.). A serum pregnancy test (Sure-Vue serum hCG-STAT, Fisher 
HealthCare) was performed for female participants of childbearing 
potential to ensure no pregnancy at the time of the scan.

Inclusion/exclusion criteria for participants. Subjects with a diagno-
sis of SCZ or SAD were group matched for age, sex, smoking status, and 
parental socioeconomic status with healthy controls. One subject with 
SCZ/SAD was unable to provide parental socioeconomic information, 
and one subject with SCZ/SAD took nicotine replacement therapy and 

Table 2. Clinical characteristics of study participants with SCZ 
and SAD

Clinical characteristic Subjects with SCZ/SAD
Psychiatric diagnosis (SCZ:SAD) 10:4
Second-generation antipsychotics Olanzapine (5), aripiprazole (4),  

quetiapine (3), lurasidone (1),  
paliperidone (1), risperidone (1),  
ziprasidone (1)

First-generation antipsychotics N/A
Antidepressants Escitalopram (2), bupropion (1),  

citalopram (1), clomipramine (1),  
fluoxetine (1), sertraline (1), trazodone (1)

Anticonvulsants Clonazepam (2), lorazepam (2),  
gabapentin (1), topiramate (1)

CPZ equivalents (mg/d) 305 ± 159
PANSS total score 71 ± 21
PANSS general symptoms score 36 ± 12
PANSS positive symptoms score 17 ± 7
PANSS negative symptoms score 18 ± 5

The number of subjects taking each medication is indicated in 
parentheses. CPZ equivalents and PANSS scores represent mean ± SD.
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Image analyses. In order to correct for inter-frame motion, the 
MCFLIRT tool (77–79) in FSL (Oxford Centre for Functional MRI of 
the Brain [FMRIB] Software Library) version 5.0.7 (77–80) was used. 
In brief, PET data corresponding to 5-minute bins spanning 60–90 
minutes after radiotracer injection were smoothed 6 mm and aligned 
to a mean volume image using rigid body linear registration with 6 
degrees of freedom. The motion correction matrix was applied to the 
unsmoothed PET data using FSL’s applyxfm4d. PET data were aver-
aged to create a motion-corrected, unsmoothed mean image for each 
subject, which was then registered to the subject’s MEMPRAGE using 
mri_coreg from FreeSurfer 6.0 (76) and skull-stripped. The MEM-
PRAGE was registered to Montreal Neurological Institute (MNI) 
space using linear (FLIRT [FMRIB’s linear image registration tool]) 
(80, 81) and nonlinear (FNIRT [FMRIB’s nonlinear image registration 
tool]) (82) algorithms in FSL, and the registration matrix was applied 
to move the PET image into MNI space. The PET image was intensity 
normalized to whole brain mean as SUVR (83, 84) to measure relative 
differences in [11C]Martinostat uptake, while controlling for inter-
individual differences in global signal. The SUVR image was spatially 
smoothed 8 mm full width at half maximum. A priori ROI analysis 

of SUVR was performed between groups for the DLPFC. The DLPFC 
surface label was based on work by Yendiki et al. (85) and was con-
verted into a volume in MNI space using FreeSurfer’s mri_label2vol. 
Whole brain voxel-wise analysis of SUVR was performed between 
groups using FSL’s FEAT with ordinary least squares (OLS) mixed-ef-
fects modeling, a significance threshold of Z > 2.3, and cluster cor-
rection of Pcluster < 0.05 (86). Whole brain voxel-wise analysis was also 
performed using FSL’s randomise with 10,000 permutations, thresh-
old-free cluster enhancement (TFCE), and PFWE < 0.05. Age and sex 
were added as nuisance regressors in voxel-wise analyses. Correla-
tions between anatomical ROIs and cognitive performance scores 
were performed with SUVR images (spatially smoothed 8 mm full 
width at half maximum) in native space using masks for the cerebral 
white matter and cerebellum cortex generated by FreeSurfer’s auto-
mated parcellation and segmentation (76). FreeSurfer’s mri_segstats 
was used to measure cortical thickness. Anatomical regions were 
described using Atlas of the Human Brain (87).

Statistics. Demographic variables and MATRICS domains were 
compared between groups using unpaired 2-tailed t tests (Table 1). For a 
priori ROI analysis of SUVR or postmortem HDAC2 mRNA comparisons 

Figure 3. Whole brain voxel-wise analysis identifies additional regions with [11C]Martinostat SUVR differences between subjects with SCZ/SAD and 
healthy matched controls. (A) Z score statistical maps were created by comparing SUVR between n = 14 subjects with SCZ/SAD and n = 17 controls 
(unpaired t test). Z score maps are overlaid onto the MNI 1-mm template in radiological orientation at MNI coordinates x = –42, x = 4, z = –2, and y = –30. 
Blue represents regions with significantly lower SUVR, and red represents regions with significantly higher SUVR, in subjects with SCZ/SAD compared 
with controls (Z > 2.3 and Pcluster< 0.05). (B) Scatterplots depicting SUVR extracted from the post hoc lower (blue) and post hoc higher (red) regions are 
shown for illustrative purposes.
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between groups in the DLPFC, unpaired 2-tailed t tests were performed 
(Figure 2, B and C). Spearman’s correlation analysis was performed to 
investigate the association between SUVR in the DLPFC and MATRICS 
or PANSS scores (Figure 2D). For whole brain voxel-wise SUVR compar-
isons between groups, an unpaired 2-tailed t test was performed with 
Z > 2.3 and Pcluster < 0.05 correction (Figure 3 and Table 3). For whole 
brain voxel-wise SUVR comparisons between groups, a nonparametric 
unpaired 2-tailed t test was also performed with TFCE and PFWE < 0.05 
(Supplemental Figure 1, A and B). Spearman’s correlation analysis was 
performed to investigate the association between SUVR in the cere-
bral white matter, or SUVR in the cerebellum cortex, and MATRICS or 
PANSS scores (Supplemental Figure 1C). Cortical thickness was com-
pared between groups using unpaired 2-tailed t tests for the DLPFC and 
for the post hoc statistically significant area (decreased in SCZ/SAD) 
revealed by voxel-wise analysis (Supplemental Figure 2A). Spearman’s 
correlation analysis was used to investigate the association between 
SUVR in the DLPFC, or SUVR in the post hoc statistically significant 
areas (decreased or increased in SCZ/SAD) revealed by voxel-wise anal-
ysis, and CPZ equivalent dose exposure (Supplemental Figure 2B).

Study approval. Ethical permission was obtained from the Part-
ners HealthCare IRB and MGH Radioactive Drug Research Com-

mittee. Healthy volunteers were recruited through advertising with 
flyers, Web announcements, and the Partners Healthcare RSVP for 
Health and Research Patient Data Registry (RPDR) systems. Healthy 
volunteers were also recruited from IRB protocols 2011P002311 and 
2009P000238. Subjects with SCZ/SAD were recruited through the 
MGH Freedom Trail Clinic and IRB protocol 2009P000238. All study 
participants provided written informed consent. Imaging procedures 
were performed at the Athinoula A. Martinos Center for Biomedical 
Imaging under IRB protocols 2015P001594 and 2015P002008. No 
adverse events were reported.
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Table 3. Whole brain voxel-wise analysis reveals [11C]Martinostat 
SUVR differences between subjects with SCZ/SAD and healthy 
matched controls

Voxel-wise analysis SCZ/SAD < CTRL, cluster size: 3294 voxels, Pcluster < 0.05
MNI coordinate (mm) Z score Anatomical region
x = –16, y = 36, z = –24 4.38 Left medial orbitofrontal gyrus
x = –22, y = 32, z = 42 4.21 Left superior frontal sulcus
x = 0, y = 52, z = –18 4.21 Inferior rostral gyrus
x = –16, y = 68, z = 8 4.02 Left middle frontopolar gyrus
x = –6, y = 26, z = 32 3.85 Left superior frontal gyrus, medial part
x = 12, y = 48, z = –20 3.74 Right medial orbitofrontal gyrus
x = –42, y = 48, z = 0 3.64 Left inferior frontal gyrus, pars 

opercularis
x = 4, y = 36, z = 36 3.29 Right superior frontal gyrus, medial part

Voxel-wise analysis SCZ/SAD > CTRL, cluster size: 4400 voxels, Pcluster < 0.05
MNI coordinate (mm) Z score Anatomical region
x = 26, y = –78, z = –2 4.94 Right cerebral white matter, occipital 

gyrus
x =–6, y = –84, z = –28 3.82 Left cerebellar hemisphere
x = 18, y = –56, z = –42 3.71 Right cerebellar white matter
x = –4, y = –66, z = –24 3.69 Cerebellar vermis
x = –10, y = –68, z = –36 3.67 Left cerebellar white matter
x = –16, y = –30, z = –32 3.67 Left lateral pons/middle cerebellar 

peduncle
x = 16, y = –76, z = –20 3.23 Right cerebellar hemisphere
x = 14, y = –30, z = –34 2.63 Right lateral pons/middle cerebellar 

peduncle

An unpaired t test with cluster thresholding (Z > 2.3 and Pcluster < 0.05) 
was performed using SUVR images from n = 14 subjects with SCZ/
SAD and n = 17 controls. MNI coordinates, Z statistics, and anatomical 
regions (87) are listed for areas significantly lower (SCZ/SAD < CTRL; 
top) or higher (SCZ/SAD > CTRL; bottom) in subjects with SCZ/SAD 
compared with controls.
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